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Task 1: Training a Shared Encoder

- We've amassed a large collection of single-cell multi-omics
datasets with unigue characteristics, including paired datasets
from 10x Genomics and unpaired datasets such as SHARE-seq,
SNARE-seq, and Nephron. These include massive single-omic and
multi-omic resources, like the 10.3 million sample CELLXGENE and
extensive ATAC-seqg and gene expression datasets. Additionally,
we have disease-specific datasets like COVID-192-affected human
lung samples and Human Kidney Cancer, which are vital for
understanding cellular differences in health and disease, and for
developing multi-omics analysis models.
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= Our multi-omics data processing approach utilizes a shared
hackbone inspired by multimodal learning, which doesn't rely on
paired data. The cell-gene matrix for different omics types is
orocessed using a unified tokenizer that maps data to a common
token space, facilitating analysis with a shared token encoder.

Task 1: Training a Shared Encoder (continued)

= This shared encoder, part of a large language model, is trained

across modalities to extract semantic features for each cell,
enabling multi-omic understanding without paired training data.
During pre-training, self-training objectives generate labels, and
task-specific heads are applied post-training for various biomedical
applications.
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Task 2: Integrate Gene Regulatory Networks

= Gene regulatory networks offer valuable insights into

context-specific gene regulation. We propose a novel approach
that integrates these networks into the pre-training of transformer
models for single-cell multi-omics analysis.

Our method involves a joint self-supervised training strategy,
aiming to enhance the model's understanding of gene
characteristics and interactions. Our co-training framework
combines single-cell multi-omics data with gene regulatory

networks using a multi-omics large language model and Graph
Neural Networks (GNNS).

= This approach unifies masked language modeling and link

prediction in the networks, providing a comprehensive
understanding of gene interactions beyond simple co-expression
relationships. By integrating biological network knowledge into the
pre-training process, our approach enhances the identification of
functionally related genes based on shared regulatory mechanisms.
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Task 3. Enhance Single-cell Multi-omics Data Integration

= This task enhances single-cell multi-omics data integration by
using cross-modal translation and contrastive learning, techniques
designed to utilize unpaired data. The goal is to boost the model’s
capacity to interpret and relate information across various omics
modalities for a deeper biological insight.

= Qur approach is focused on aligning unpaired multi-omics data
using cross-modal translation, building on previous successful
methods like BABEL and scCross that translate between RNA-seq
and ATAC-seq data. Our approach expands on this by including a
wider variety of omics data and employing a bidirectional
transformer for pairwise alignment, aiming to minimize the
distance between original and translated data across different
omics types, thus enhancing alignment accuracy.
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= By encoding each omics modality with a specific self-attention
transformer encoder and optimizing embeddings through
contrastive learning with the InfoNCE loss, the goal is to minimize
the distance between paired omics, while maximizing it for
unpaired ones.

= This approach aims to improve the model’'s accuracy in classifying
and aligning multi-omics datasets, leveraging both the diversity
and the specificities of the data.
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