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We employ three objectives to learn increasing levels of interaction structure in a MAG.
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We present Multi-Agent Interaction as a graph (MAG). We capture rich

knowledge from MAGs via the following four levels of MAG components. * Level 1: Distillation from multiple teachers > distillation from strongest teacher only.

* Level 2: Distillation from pre- and post-interaction reasoning > only pre. reasoning.

Multi-Agent Interaction Graph (MAG) » Level 3: Negative reasoning chains further improve distillation.
A football team played 22 games. They won 8 more than they lost. . _ _ _ . .
How many did they win? (Gold Answer: 15)  Level 4: Structured distillation from interactions > all multi-teacher baselines.
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* Level 1: Learning from multiple teachers. The student learns from Accuracy

the correct reasoning of multiple teachers, rather than one.

* Level 2: Learning from teacher interactions. The student learns from

both pre- and post-interaction data between multiple teachers.

* Level 3: Learning from negative reasoning. The student additionally

distills from negative or incorrect reasoning from the teacher models.

* Level 4: Learning from structure. The student learns from the output

and graph-structure of teacher LLM interactions.
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« MAGD:Ii achieves up to a 9x reduction in token count.

 MAGDI achieves a better balance of efficiency and performance.

* More efficient than its teacher system ReConcile

* Performs better than zero-shot and prior single-teacher distillation methods.

I Generalizability, Scalability and Diversity
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MAGD:i scales positively with the student size and performs better on OOD datasets.

Mistral-7B SIT-GPT4 MAGDI
w/o SC 44.05 4'7.38 52.27
w/ SC 48.44 [+ 4.39%] 58.62 [+ 11.24%] 67.42 [+ 15.15%]

MAGD:i obtains larger improvements w/ self-consistency, which relies on model diversity.
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