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Parallel Contrastive Pre-Traininc

e Text Encoder: xIm-roberta-large e Trained on MS-COCO dataset translated into Spanish,

e Image Encoder:

Japanese, and Hind1 using Google Translate

google/vit-base-patch16-224-1n21k e In-batch negative sampling + cross-lingual positive

Un elefante en silla
de montar sostiene
hojas en su trompa.
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e Trained a baseline on only English data
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® Accuracy for retrieving nearest neighbor image
based on encoding distance to sentence

e Higher 1s better

e Multilingual training even improves English
performance

e Improves zero-shot performance greatly
(underlined)

https://github.com/nkrasner/ML-CLIP
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e Median and quartiles for where correct image ranks by
distance from sentence encoding

e [ower 1s better

e Multilingual training improves consistency as well as overall
performance
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from English
encodings to others

e Multilingual training
improves alignment
between languages

e Over the COCO
validation set, so from

a pool of 5000 N
candidate sentences fr
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