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Overview

LLMs exhibit remarkable performance but come with high expense. We are

motivated to design a cascade following the intuition that simple questions Final Answer

could be answered by weaker LLM, whereas only the challenging questions Answer 2 ~ Accept A= A"
necessitate the stronger LLM. Q“ery—> @ [')‘;‘C'\ggﬁsl\‘;‘zizr Answer

We leverage a cascade to save the cost. Given the question, the cascade first Weaker g JReject @% A > F"E'f”j‘@’e'
leverage the weaker LLM to get an answer and then decide to accept or s Stronger N
reject the answer. The key component is the decision maker. In our work, we > LM

propose to make the decision based on the "answer consistency” with a
mixture of two thought representations (i.e., CoT [1] and PoT [2]).

LLM Cascades for Cost-efficient Reasoning

We set a non-zero temperature and have different sampling strategies:
 Sampling with the same prompt (self-consistency): Sampling multiple answers given the same prompt input [3].
 Sampling with different demonstrations: Sampling answers with prompts that have different in-context demonstration examples.

* Sampling with different representations: Sampling answers with prompts that have different representation of intermediate steps.
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