Log probability scores provide a closer match to human
plausibility judgments than prompt-based evaluations
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Background Approach

¢ Traditional approach for assessing LLM knowledge: LogProbs We compare LLM and human Contexts:
. performance on two prompt- 1. "Aalok likes Ben."
PS | C) = Z log P(w, | C,S_)) based tasks - and Likert 2. "Aalok hates Ben."
=1 - and additionally evaluate LLM Scenario:
i i "Aalok and Ben are friends."
¢ LogProbs capture many aspects of LLMs” commonsense world knowledge, performance with the classical E H b di
. . ) . . LogProbs approach. nter the number corresponaing
including knowledge of object properties (Misra et al, 2023) and common to the context that makes more
events (Kauf, Ivanova et al, 2023), but are sensitive to other factors too. , _ _
( ) Controlled stimuli probing sense. Your response must be
+ New(er) approach: Prompting commonsense social relations either "1" or "2".
knowledge (see details below). Likert
Rate the likelihood of S given C.. "Aalok likes Ben. Aalok and Ben
. . . . We use naive prompting: are friends."
¢ Advantages of Prompting: user-friendly, sensitive to specific tasks larresl| m e e iae e dhems Rate the scenario using a num-
, | of humans. ber from 1 to 5, with 1 meaning
¢ However: Hu & Levy (2023) showed that Prompting underestimates "makes no sense", and 5 meaning
linguistic knowledge in LLMs relative to LogProbs. For prompting, we constrain "makes perfect sense".
outputs to 1-2 ( ) or 1-5
¢ WE ASK: How do LogProbs vs. Prompting compare when assessing (Likert); this approach works LogProbs
world knowledge in LLMs using a context-sensitive sentence plausibility comparably to free generation. "Aalok likes Ben. Aalok and Ben
task? are friends."

Results

1. LogProbs is a better metric of LLM knowledge than naive Prompting. @ : ,
: ) o CHOICE-LIKERT consistency
2. Human but not LLMs’ performance is robust to task variations.
Human 0.96
GPT2_XL 0.54
GPT2_XL MPT_7B MPT_7B-chat MPT_30B MPT_30B-chat MPT 7B 0.83
@ CHOICE 0.53 0.49 0.50 0.49 0.51 MPT_7B-chat 0.63
LIKERT 0.50 0.50 0.51 0.51 0.64 MPT_30B 0.71
LOGPROBS 0.72 0.79 0.82 0.82 0.83 MPT_7B-chat 0.74

See also

B. This work is part of a broader effort by Ivanova, Lipkin, Sathe et al (in prep) to
build a cognitively inspired commonsense benchmark, Elements of World
Knowledge (EWoK).

A. In the Kauf et al (2024) preprint, we replicate and
extend result #1 on additional datasets and models,
both in context-free and context-sensitive settings.

In some cases, RLHF fine-tuning decreases LogProbs performance many domains controlled, curated, generalizable stimuli
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Conclusion

¢ LogProbs are an easy, straightforward way to quickly estimate commonsense
world knowledge in LLMs.
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