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Conclusions

Introduction

Retrieval-Augmented Generation:
Is Dense Passage Retrieval Retrieving?

• LLMs, widely used but hallucinate often  mislead people 

and erode trust in LLMs

• RAG addresses hallucinations by adding information to query.

• Important for retrieval to have both high recall and precision.

• To improve retrieval performance we analyze retrieval models 

from multiple perspectives.

• Why does DPR training improve on BERT?

• In this poster we:

1. Probing model to determine if pre-trained BERT features are 

as discriminative as DPR-BERT in matching a query to 

correct passage amongst hard-negative passages.

2. Compare relative strength and number of activations of the 

feedforward layers throughout the original pretrained and 

DPR-trained models

3. Add and remove knowledge from network  investigate how 

knowledge interacts with DPR training.
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Knowledge Consistency

Figure 1: Example Retrieval-Augmented Model Architecture [1]

Table 1: Performance of pre-trained BERT and DPR BERT on retrieval.

Knowledge Decentralization

• Findings suggest capabilities to discern relevant from irrelevant passages 

already present in BERT.

Table 2: Per layer probing performance on 2-5 passage matching task.

Figure 4: Per layer attribution scores in pre-trained and DPR-trained BERT

• Examined neuron activation patterns for pre-trained and DPR-trained 

models

• Knowledge attribution method from [3] used

• Following [3], a threshold of

0.1 ∗ max(Attr) was applied to 

identify coarse set of knowledge neurons.

• DPR expands "keys" available to access a given volume of semantic 

knowledge.

• Decentralization strategy for semantic knowledge.

• Decreases accessible volume of syntactic knowledge.

Adding and Removing Knowledge

Table 3: Results of adding and removing facts from BERT and then DPR-training 

BERT

• Do facts that pre-trained BERT knows reappear in DPR-BERT?

• Both knowledge addition and removal experiments show DPR training 

refines how pre-existing knowledge within BERT rendered more 

"retrievable". 

• Added facts became retrievable, removed ceased to be retrievable.

• Linear probing reveals mutual information shared between model’s 

primary task and probing task [2].

• Probe trained for each BERT block to discriminate between true 

positive and hard negative passages.

• Performance disparity between probes for pretrained and DPR-

trained BERT relatively minor.

Table 2: Example queries with counts of strongly activated neurons. DPR BERT 

has more strongly activated neurons and more focused retrievals.

• DPR does not add knowledge to networks

• It decentralizes knowledge representation 

• Allows for more pathways to trigger same information.

• Retrieval limited by knowledge present in network after pre-training
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