Using Large Language Models for Data Extraction from Tables in Materials Literature

Defne Circi, Ghazal Khalighinejad, Anlan Chen Bhuwan Dhingra, L. Catherine Brinson

Unlocking Insights in Scientific Literature

- Finding and using data from literature is a common problem.
- We need to **search among many documents** for key information.
- Traditionally, data extraction is done manually \rightarrow time consuming and tedious
- Collecting experimental data at a scale is critical.
- Large language models (LLMs) can make the information most important to scientists, such as material identification and properties readily available.
- Composition and properties of materials are predominantly condensed in tables.

1. Goal: Extracting multiple experimental samples per table

4. Evaluation of LLM output

2. Dataset overview and ground truth samples

- Articles from MaterialsMine database
- **Table dataset**: 18 articles, 37 tables and their captions, 182 samples
- Sample size range from 2 to 15
- On average 3.1 material properties in each table

3. Choosing inputs of table data

Option 1: GPT-4-Vision on table image

Composition level evaluation

Ground Truth	Predictions
Sample id: 1,	Sample id: 1,
matrix name: PP, <u>match</u>	matrix name: PP,
filler name: silica, <u>not a match</u>	filler name: none,
composition: {amount: 5%, type: wt}, <u>partial match</u>	composition: {amount: 0.0%, type: wt},
particle surface treatment name: not specified, <u>match</u>	particle surface treatment name": not specified,

Accuracy scores of composition information extraction

no	yes
0.917 ± 0.036	0.910 ± 0.037
0.890 ± 0.065	0.790 ± 0.107
0.948 ± 0.032	0.816 ± 0.113
0.890 ± 0.056	0.832 ± 0.089
	$\begin{array}{c} \text{no} \\ 0.917 \pm 0.036 \\ 0.890 \pm 0.065 \\ 0.948 \pm 0.032 \\ 0.890 \pm 0.056 \end{array}$

Ground Truth	Predictions
properties: {	properties: {
Example Property Identifier: {value: 910, unit: MPa, conditions: [{type: temperati property match 413, unit: K}],	Not Close Property Name: {}, Example Property Name : {value: 910, unit: MPa, conditions: ype: temperature, value: -413unit: K}], }

F1 scores of property name information extraction

Input type/Including missing samples	no	yes
Image	0.869 ± 0.078	0.863 ± 0.078
OCR	0.766 ± 0.104	0.666 ± 0.117
Structured Format (with captions)	0.795 ± 0.107	0.682 ± 0.129
Structured Format (without captions)	0.617 ± 0.133	0.576 ± 0.134

F1 scores of property information considering value, unit and condition

• Calculated a matching score for each of the entities. The final score for a property is an average of these individual scores. Equality check is used for values and units

Option 2: GPT-4 on unstructured OCR extraction from table image

Option 3: GPT-4 on unstructured OCR extraction from table image

This material is based upon work supported by the National Science Foundation under Grant No. DGE-2022040

defne.circi@duke.edu, ghazal.khalighinejad@duke.edu, anlan.chen@duke.edu bdhingra@cs.duke.edu, cate.brinson@duke.edu

Findings

- Multimodal model with an image output yielded the most promising results.
- We introduced a flexible evaluation technique tailored to assess the accuracy and efficiency of these extraction methods, contributing to a nuanced understanding of their performance on this complex task.

Future work

- Granular benchmarking across entity and relationship types
- Benchmarking across commercial and open-source models
- Extracting sample information from tables, figures and text
- Scaling complex extraction and verification to various
 materials domains