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4. Evaluation of LLM output

Unlocking Insights in Scientific Literature

• Finding and using data from literature is a common problem.
• We need to search among many documents for key information.
• Traditionally, data extraction is done manually → time consuming 

and tedious
• Collecting experimental data at a scale is critical.
• Large language models (LLMs) can make the information most 

important to scientists, such as material identification and properties 
readily available.

• Composition and properties of materials are predominantly 
condensed in tables. 

LLM

Unstructured

1. Goal: Extracting multiple experimental 
samples per table

2. Dataset overview and ground truth samples 

3. Choosing inputs of table data

Option 1: GPT-4-Vision on table image 

 

Option 2: GPT-4 on unstructured OCR extraction from 
table image 

Option 3: GPT-4 on unstructured OCR extraction from 
table image 

Future work

Structured

• Articles from MaterialsMine database

• Table dataset: 18 articles, 37 tables and their captions, 

182 samples

• Sample size range from 2 to 15

• On average 3.1 material properties in each table

• Granular benchmarking across entity and relationship types

• Benchmarking across commercial and open-source models

• Extracting sample information from tables, figures and text
• Scaling complex extraction and verification to various 

materials domains
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Ground Truth Predictions
Sample id: 1,

matrix name: PP,

filler name: silica,

composition: {amount: 5%, type: wt},

particle surface treatment name: not specified,

Sample id: 1,

matrix name: PP,

filler name: none,

composition: {amount: 0.0%, type: wt},

particle surface treatment name": not specified,

partial match

match

match

not a match

Composition level evaluation

Property and condition level evaluation

properties: { 

            Example Property Identifier: {value: 910, 

unit: MPa, conditions: [{type: temperature, value: 

-413, unit: K}],

            Another Key Name: {...}

            

}

properties: {

            Not Close Property Name: {…},

            Example Property Name : {value: 910, unit: MPa, conditions: 

[{type: temperature, value: -413unit: K}],

}

property match 

Accuracy scores of composition information extraction 

F1 scores of property name information extraction 

F1 scores of property information considering value, unit and condition
• Calculated a matching score for each of the entities. The final score 

for a property is an average of these individual scores. Equality check 
is used for values and units 

Ground Truth Predictions

Calculating the condition score

GPT-4

This material is based upon work supported by the National Science 
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Findings
• Multimodal model with an image output yielded the most 

promising results.

• We introduced a flexible evaluation technique tailored to 

assess the accuracy and efficiency of these extraction 

methods, contributing to a nuanced understanding of their 

performance on this complex task. 
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