

Stanceosaurus 2.0:

Classifying Stance Towards Multicultural Misinformation

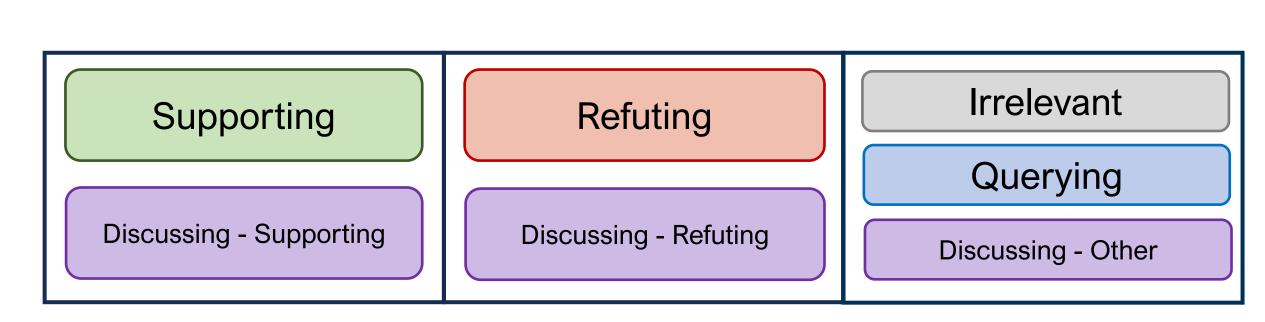
Jonathan Zheng*, Anton Lavrouk*, Tarek Naous, Ashutosh Baheti, Ian Ligon, Alan Ritter, Wei Xu

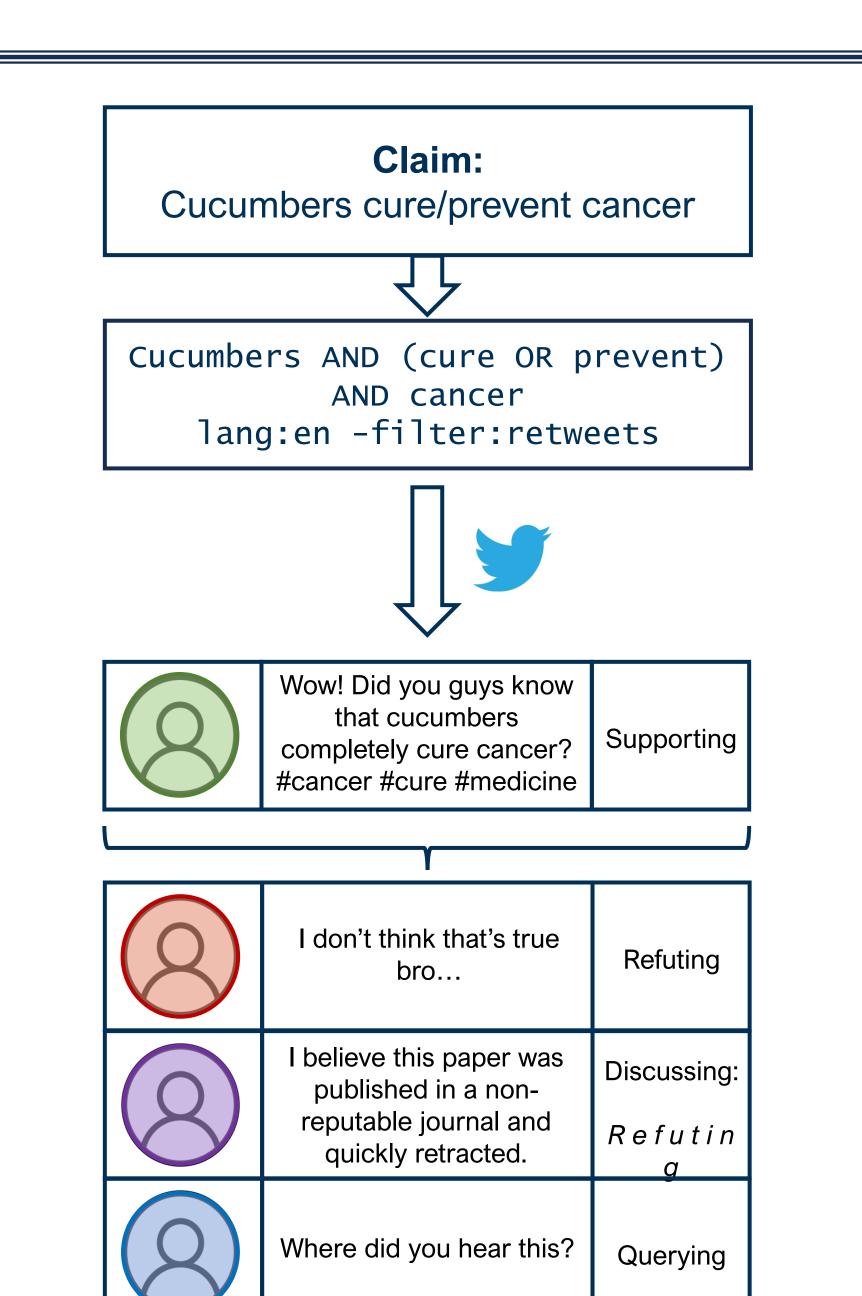
College of Computing – Georgia Institute of Technology

Motivation

- Previous misinformation corpora neglect non-English languages.
- It is important for misinformation datasets to be adaptable to other datasets, so that we may continue expanding our knowledge base.
- The class imbalance issue is highly prevalent in misinformation corpora.

Disinformation in Spanish is prolific on Facebook, Twitter and YouTube despite vows to act


Social media platforms' failure to eradicate the false information amounts to aiding and abetting disenfranchisement, advocates say



Data Collection

- **Step One: Collecting Misinformation Claims** We randomly sample multiple fact checking sites for a diverse set of misinformation claims.
- **Step Two: Writing/Running Queries**
 - We write Twitter/X API queries, such that we maximize relevant tweets, while at the same time trying to balance class distribution.
- **Step Three: Annotation**

We annotate up to 50 tweets and 100 context tweets for each claim. Fine grained annotation using both stance and leaning allows for an interchange between 3 and 5 class (see below).

Corpus

English 20,707 tweets

Arabic 4,009 tweets

Hindi 3,317 tweets

Spanish Russian 1,966 1,907 tweets tweets

Discussing 20,707 tweets

Irrelevant 4,009 tweets

Supporting Refuting Querying 3,317 tweets

PICS IN BIO

2,044 tweets

tweets

Irrelevant

Statistics

Model

 $+ CB_{foc}$

+ CB_{foc}

+ CB_{foc}

+ CB_{foc}

 $BERT_{base} + CE$

+ weighted CE

 $BERT_{large} + CE$

BERTweet_{base}+ CE

BERTweet_{large}+ CE |

+ weighted CE

+ weighted CE

+ weighted CE

English Stance

Detection

Precision

 51.1 ± 1.1

 50.5 ± 1.9

 50.6 ± 1.3

 54.3 ± 0.8

 53.8 ± 1.3

 53.9 ± 1.2

 53.1 ± 1.2

 51.8 ± 1.0

 51.3 ± 0.6

 60.6 ± 2.0

60.8±1.6

 59.8 ± 1.3

Stanceosaurus (unseen claims)

Recall

 50.5 ± 2.0 50.4 ± 1.6

 52.7 ± 1.1 51.3 ± 1.3

 55.7 ± 2.1 52.5 ± 1.0

 53.0 ± 0.6 53.6 ± 0.6

 53.8 ± 1.2 53.6 ± 1.0

 53.7 ± 1.1 53.6 ± 0.5

 52.2 ± 1.6 52.3 ± 1.0

 55.2 ± 1.4 53.1 ± 0.7

 56.8 ± 0.6 53.5 ± 0.3

 60.2 ± 1.0 60.2 ± 1.1

 60.2 ± 1.0 60.2 ± 0.5

62.8 \pm 1.5 **61.0** \pm 0.8

F 1 4!
Evaluation

Claims are split into train, dev and test sets. Models are evaluated on unseen claims.

Class-Imbalance Issue

Class-balanced focal loss achieves better performance than weighted CE.

$$CB_{foc}(\hat{s}, y) = -\underbrace{\frac{1 - \beta}{1 - \beta^{n_y}}}_{\text{reweighting}} \underbrace{\sum_{m \in C} (1 - p_m)^{\gamma} \log(p_m)}_{\text{focal loss}}.$$

	Russia	an		
Loss	Precision	Recall	F 1	
CE	53.55±0.8	35.33±0.7	36.15±1.3	
Weighted CE	44.38 ± 0.2	42.84 ± 0.5	42.09 ± 0.1	
CBFL	45.60 ± 1.5	$46.98{\scriptstyle\pm2.0}$	43.94 ± 0.2	
	Spanis	sh		
<u> </u>				
Loss	Precision	Recall	rı	

 40.86 ± 0.7

 42.65 ± 0.5

 41.81 ± 1.0

 43.75 ± 0.4

CE | 50.26±1.9

 54.12 ± 0.4

Weighted CE

CBFL	51.26 ± 2.2	44.15 ± 0.9	43.83 ± 1.0			
Hindi						
Loss	Precision	Recall	F1			
CE	52.1±2.9	39.4±2.0	40.8±2.5			
Weighted CE	55.0 ± 4.2	42.4 ± 1.4	44.3 ± 1.8			
CBFL	53.0 ± 3.4	44.1 ± 1.7	45.3 ± 1.5			

Arabic					
Loss	Precision	Recall	F 1		
CE	44.8±4.0	40.1±2.5	40.0±2.0		
Weighted CE	44.1 ± 3.3	40.7 ± 1.6	39.7 ± 1.7		
CBFL	46.1 ± 2.6	44.7 ± 1.1	43.1 ± 0.2		

Cross-Lingual Transfer

Experiment

We train mBERT on English Stanceosaurus, and evaluate on Russian, Spanish, Hindi, and Arabic.

Results

Each language show's comparable performance to the other, showing potential merits of the data.

Dataset Adaptability

We show that an **EasyAdapt** combined version of **Stanceosaurus** and RumourEval scores a higher F1 on both datasets test sets.

Test	Stanceosaurus			RumourEval		
Train	Prec.	Rec.	F1	Prec.	Rec.	F1
Stanceosaurus	66.9	67.1	66.8	44.8	43.8	41.2
RumourEval	39.8	43.6	40.6	79.6	59.7	65.7
Combined				61.1		
EasyAdapt	68.3	67.0	67.4	74.4	62.6	65.8

English Performance On Unseen Claims

Fact Check Source	#test	Precision	Recall	F1
AAP Fact Check	452	50.1	39.4	40.6
AFP Fact Check CAN	824	71.5	54.7	58.7
AFP Fact Check NZ	224	64.2	63.7	63.5
Blackdotresearch	516	65.7	62.0	60.4
Factly	447	59.4	68.2	62.5
FullFact	474	57.0	55.4	55.8
Poynter	118	73.2	61.3	63.0
Politifact	614	57.7	53.7	51.8
Snopes	1402	61.4	52.0	54.4
All	5071	62.9	54.3	57.1

Set-up

We test BERTweet's ability to generalize toward regional claims by training on international claims. We create a new train/test/dev set based on claim location.

Results

Results vary wildly between sources. Two sources with the most international data have the highest F1 scores.