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where 7 > () is a temperature parameter which controls the spread of exposure probabilities
over the lop scoring items. When 7 = 0 (i.¢., hardmax), these probabilitics correspond 10 (op-
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attected by the level of algorithmic exploration. Perhaps counter-intuitively, we show that high levels

[ ]
I l l e 3 t I l e : l er 1 l I t rO d l l Ce d of exploration incentivize broadly appealing content, whereas low levels lead to specialization.
* )

In Scction 3, we explore how creator behavior models can facilitate a pre-deployment audit. Such

an audit could be particularly useful for assessing the producer impact of algorithmic changes,

[ ] [ ] which is hard to measure by A/B testing for two important reasons: (1) producers cannot be easily

| randomized to distinct treatment groups, and (2) there is often a delay between deployment and

t e t e I l l e r a't l I r e ar a l l l et e r T t O content adaptation. Our hope is that this new style of auditing will enable detection of misalignment

. between the induced and desired incentives, and thus flag issucs to cither immediately address,
or monitor in content filtering and moderation. For demonstration, we execute a pre-deployment

audil on the MovieLens and LastEM datasels using the exposure game behavior model, and matrix

t 1 t ] ] f factorization based recommenders. We find a strong dependence between algorithmic choices like
p 1.1 SETTING AND THE EXPOSURE GAMT INCENTIVE MODEIL

[
° ° ° We assume there is a fixed recommender system trained on past data, and a fixed population of users
(consumers). Together, these induce a demand distribution P, which represents typical traffic on
r O a 1 1 1 e S a I l O e the platform over a predefined period of time. Content is created by n € N producers who try to
° maximize their expected exposure (utifity). Denoting consumers by ¢ ~ £%,, an item created by the

embedding dimension and level of exploration, and properties of the incetivized content such as
diversity (confirming our theory), and argeting of gender-based user and creator groups.

i producer by s; (strategy), s = (8i};e5,. and sy; = (sJ )5,i, we define (expected) exposure as the
proportion of the “user attention pool” captured by the i producer

follow-u anal ySES and i e e e S et
p with p;(c) > 0 the probability that the algorithm exposes ¢ to &, rather than any s;, As common in

game theory, we can extend from deterministic single item strategies to stochastic multi-item strategies
. 33 ~ P; for some distribution P;. This extension is discussed in more detail in Section 2,
[ ] [ ] [ ]
eXp e r 1 me nt S ar e b u 1 lt O n t h 1 S The assumption that [1{c is exposed to s;} ™ Elp;(¢)] does not explicitly model interactions not
[ ]

mediated by the algorithm (e.g., YouTube videos linked to by an external website). This may be
a reasonable approximation [or infinite feed platforms (e.g., Twilter, Facebook, TikTok) where most
consumers scroll through items in the algorithm-defined order, and search engines (e.g.. Google,
Bing) where first-page bias is well documented (Craswell et al.. 2008). While similar assumptions
arc common in the literature (¢.g., Li et al., 2010; Chen et al,, 2019; Ben-Porat et al., 2020; Curmei

HO ‘ N 7 e ‘ 7 er l l l OSt reCO l l l I l l e l l der et al., 2021), alternative interaction models are an important future research direction.

Unlike previous work (Section 1.2), we focus on the popular class of faclorization-based algorithms.

| recommendation or absolute first-position hias. Taking = = 0 models the eftects of ranked position,

[ ] o [ ]
I I 1 r 1 1 injected randomness for exploration, and can partially adjust for user randomness and other factors
° which make top-ranked items reecive more but not all of the traffic. While an approximation in some
settings, Equation (2) has been directly used, e.g., by YouTube (Chen et al.. 2019). We emphasize that

we mike no assumption on how the embeddings wre obliined. Our conclusions thus apply equally 1o
classical matrix factorization and deep learning-hased systems.

p le ase eXp 1 ai n t he T at i on ale or Wo e now rady o foanalie o gamer, an feative-base el of rato blavos

Definition 1. An exposure game consists of an embedding dimension d € N, a demand distribution

P. € P(RY), and n € N producers, each of whom chooses a strategy s; € §¢ 1 = {u € R: ||v] =

° ° 1}, to maximize their utitity v;(s) = Ecp [pi(c)] with pi(c) as in Equation (2) for a given T = (.
“ r j r ‘A 7 ; We restrict items s; to the unit sphere 5772, A norm constraint is necessary as otherwise cxposure
° could be maximized by inflating ||s;| — oc, which is not observed in practice.! We distinguish

Possibly duc to the often finile rating scale, use ol gradient clipping, and various forms of regularization.

2

Official Review of Paper6317 by Reviewer 6hAx

. —1
Question 1: | exp(fr <c’ S’I,>) _1 n
Published s » conference paper . ICLR 2023 Strengths: 1.In eq. (2), the paper introduced the temperature parameter 7 to control the _ _ ft )
1.The paper is well-written and flows very smoothly. Despite the paper's modest space, it provides the spread of exposure probabilities. Many of the follow-up analyses and 1 (C) — n — SO maX T <C’ S ’l’ > )
MODELING CONTENT CREATOR INCENTIVES ON required context and necessary explanation in a good job experiments are built on this. However, most recommender systems didn't ) exp (7- I 1 <C 8 g, > )
ALAORITEN-CARATED S LETEORNES 2.Most parts of the paper have clear motivations. Many of my questions are well answered in the paper. include this in their objectives. Could you please explain the rationale or 1 / — 1 ) 1
okl e ey ek e A connectivity between these?
' Weaknesses/Questions:
ABSTRACT 1.In eq. (2), the paper introduced the temperature parameter 7 to control the spread of exposure Answer 1:

Content creators compele for user attention. Their reach crucially depends on

algorithmic choices made by developers on online platforms. To maximize probabilities. Many of the follow-up analyses and experiments are built on this. However, most recommender The temperature parameter can be understood as a relaxation of top-1

exposure, many creators adapt strategically, as evidenced by examples like the

i e i pol. Ve e e s v s systems didn't include this in their objectives. Could you please explain the rationale or connectivity between recommendation (corresponding precisely to 7 = 0 ). The softmax case (
game, a model of incentives duce Yy algorithms, including modern actorization

i vl g Al st these? T > 0) captures nondeterminism, allowing non-zero probabilities of exposure
e o e e ot e e e, 1 () 2.For the e-LNE solver in eq. (4), is this the paper originally proposed or adapted from others? I'm not for items with rank larger than 1.
i mderaton. T (i cnd we proposs tools or umerically g cquikoRs familiar with the NE-based methods. It seems it's also updating the model with the gradient. Could you

please illustrate a little more on the common points and difference between this one and the normal gradient Question 2:

descent method used to optimize ML model? 2.For the e-LNE

3.0n page 3, I'm confused about the full control assumption. What's the difference between full contry and solver in eq. (4), is this the paper originally proposed or adapted

and moderation. To this end. we propose tools for numerically finding equilibria
in exposure games, and illustrate results of an audit on the MovieLens and TastFM
datasets. Among else, we ﬁ])d thzlxt the 5(ra\tegicaﬂy produced content exhibits strong 0 p e n
dependence between algorithmic exploration and content diversity, and between
model expressivity and bias towards gender-hased user and creator groups.
®
ReVI ew »partial control and why it can abstract away the explicit model of producer actions? Is it possible to list some ——> —>»from others? I'm not familiar with the NE-based methods. It seems it's
concrete examples? also updating the model with the gradient. Could you please illustrate a

1 INTRODUCTION

In 2018, Jonah Peretti (CEQ, Buzzfeed) raised
alarm when a Facebook main feed update started
boosting junk and divisive content (Hagey & 7T fixed

Horwitz, 2021). In Poland, the same update 1 demand distribution
,‘-.' gt N

7 producers

caused an uptick in negative political messaging
(Hagey & Horwitz, 2021). Tailoring content

to algorithms is not unique to social media. )] . . . .
For example. some scarch _cn_ginc uplimizuliun A2 ' 7 Ilttle more On the Common pOI ntS and dlffe rence between thIS One and .
(SEQ) professionals specialize on managing . N \.:\
impacts of Google Search updates (Marentis, - = 1 1 1
e Deis e, S ot ) " n e . Rebuttal the normal gradient descent method used to optimize ML model? C a n t o e I n t e o 0
etal., 2021; Goodwin, 2021). While motivations ENS .,1/'.‘ ~ - .
for adapting content range from cconomic to =T B, [softmax (L [{e, 5] 0_,)
socio-political, they often translate into the same ’ *
operative goal: exposure maximization. Figure 1: Exposure game. Ttems s; € S4-1
placed to maximize exposure to comun:ers ¢~ P. An swer 2 :

We study how algorithms arflfwl cx]foaurc:r rioeinsnibekestor ardsledilel arerse H H : 1 . . . .
g, o prodsoets Cono Ao L e iou oot by bl Comet ek ST iRy oy Rfe mo1t|vat|on for (tjerpperature parzmeter Th(le tempera:)ure 1E)rz]aram;ater can be unde[)StOOd as a relaxation We are not the first to use gradient ascent for finding €-LNE, as the same
a given algorithm (Seetion 1.1). When producers act strategically, a steady state—Nash equilibrium - p— . . . .
ol ke it o el e G o ). i s of top-1 recommendation (corresponding precisely to 7 = 0 ). The softmax case (7 > 0) captures ideas have been present and used, e.g., in [4, 5] . Essentially, the algorithm
We focus on algorithms which model user preferences as an inncrpmt;llcl de-dim;:nsiunul user nondetermlnlsm’ aIIOWIng non-zero prObabIIItIeS Of exposure for Items WIth rank Iarger than 1 ' runS n independent gradient ascent Optimizers, eaCh fO”OWing the gradients Of
and item embeddi<n_g<, a[ld ran}c items'h)" the est.i111\:;\\:2%([‘)::;re:ncc;;c?e‘i(i::e% p:’z:lent: trinn;lf:: e . . . . .
e it Yophi Moy oy oot oo ] . _ _ o , the utility w;(s) . The optimizers execute steps simultaneously, i.e., the iterate
dings—dersmine whether there ple NE. The characer of NE is s R I ts: W t the first t dient t for find LNE th d
g . one, ple NE. € solver In experiments: vve arg not the T1iIrst 1o Ulse graaien a§cen ortn lng €= , aS e. Same |geas at step ¢t 1 1 is obtained by assuming that the other players play the strategy
! have been present and used, e.g., in [4, 5] . Essentially, the algorithm runs n independent gradient ascent from step ¢
optimizers, each following the gradients of the utility u;(s) . The optimizers execute steps simultaneously,
i.e., the iterate at step ¢ + 1 is obtained by assuming that the other players play the strategy from step £.

Re producer definition in experiments: Defining the exposure game only requires embeddings of the

ol ¥
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users which we fit from rating data using matrix factorization methods (the corresponding item embeddings

n

— -
are not used in the experiments). Independent of the original dataset, we define a number of producers. We C t t -

focus on pure e-LNE, corresponding to each producer creating a single new item.We will clarify this On eX n

relationship between producers and items in the final revision.

u(8) = w8, 915) = Eenp, [1{cis exposed (0 3] = Eewp [p(c)] . (1

ith p; () > 0 the probability that the algorithm exposes ¢ to ; rather than any s;. As common i
pame theory, we can extend from deterministic single item strategies to stochastic multi-item strategie

ki ~ P; for some distribution P;. This extension is discussed in more detail in Section 2, e ]
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Unlike previous work (Section 1.2), we focus on the populir class of [aclorization-buased algorithmy
These models rank items by a score estimated by the inner product of user and item embedding

: : - : ire
. 5; ¢ 2%, The larger this score, the higher the probability of exposure, which we model as
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