Duke

ChatShop: Interactive Information Seeking with

Language Agents*

Sanxing Chen, Sam Wiseman, Bhuwan Dhingra

Motivation

- LLM-as-agent has become a popular idea as they can follow instructions and complete many nontrivial tasks.
- Does LLM agents deliberately seek information from the environment, and how strategic is their plan?
- Can we evaluate this automatically in a realistic environment?

Key idea

- Many tasks assume the initial instruction contains sufficient information for an agent to complete the task
- Create a information need by simplifying the instruction and build a communication channel to release information through interactions
- e.g. "a nonslip sandals for my wife that is blue in color, 5.5 size"

Dataset

	WebShop	ChatShop
# Vocab	2871	1166
Avg. Length	15.1	2.3

- We repurpose **WebShop**, which is a large-scale web-shopping task with millions of products crawled from amazon.com
- We process the 1500 goal instructions in the dev and test sets of Webshop and obtain the simplified instructions using GPT-3.5 and few-shot prompts.

Experiments

WebShop can be solved non-interactively

- **Retriever:** use a BERT-based relevance model for (instruction, product) pairs trained with contrastive loss
- **Procedure**: rerank top 50 products obtained from a BM25 search engine using the instruction as query.
- **Results**: we achieve a 78.3% success rate and 87.2 average rewards on the dev set, which is superior to the reported 59.6% success rate and 82.1 average rewards of human expert annotator.
- Zero-shot LLMs: prompting GPTs also leads to near 80 average rewards.

	CodeLlama	GPT-3.5	GPT-4
None	34.3	43.4	48.8
Open-ended	-	40.6	49.7
Instance	-	40.4	51.3
Full Info	64.5	76.0	80.1

Strategy CodeLlama		Llama	GPT-3.5		GPT-4	
CoT	w/o	w/	w/o	w/	w/o	w/
no q	34.3	30.1	43.4	45.6	48.8	47.5
auto q	-	-	40.6	62.7	49.7	59.2
all q^{-}	25.6	29.4	63.7	61.3	63.0	66.3
interleave	18.8	28.9	64.3	68.2	60.5	68.1

Table 1: Avg. rewards of (auto q) agents under different settings of information disclosure. CODELLAMA cannot perform under the interactive settings without advanced prompting strategies.

Table 2: Avg. rewards of agents with different strategies and the open-ended communication channel. no q is the non-interactive baselines.

An interactive setup

- **Info seeking task**: the agent starts with a simplified instruction
- Agent and Shopper: a shopper with the intent to purchase an item and an agent that assists the shopper in finding the correct product
- Action Space:
- 1) search [query]: search a BM25 search engine to get a ranked list of products;
- 2) select [index]: finalize recommendation when a single product is determined;
- 3) question [content]: when more information is needed for a precise decision, the agent can interact with the shopper for further clarification.
- **Communication Channel**: 1) open-ended text-based interaction and, 2) instance-based comparison
- Advanced Prompting Strategy: using heuristics to enforce search and question actions
- Results
- basic prompting strategy is inadequate to incentivize the agents to interact with the environment, LLMs are satisfy with partial information
- CoT or ScratchPad prompting generally help with interaction
- GPT-3.5 surprisingly outperforms GPT-4
- the gap between the best agent and the no-interactive full info baseline remains significant

LLM versus Human Shopper

	GPT-3.5	GPT-4
Simulated	59.0	62.8
Human	58.2	63.4

Table 3: Avg. rewards of LLM agents with simulated and human shoppers over 50 sessions.

Figure 2: Relative frequency of error types in the LLM agents' failed trajectories with simulated and human shoppers.

Quality of simulation

- LLM agents performance with the simulated shopper and the human shopper are consistent.
- The distributions of automatic categorized failure patterns between the two environments are also similar

Conclusions

- Some agent tasks can be framed as non-interactive retrieval tasks and better solved by smaller models
- Scaling up model size doesn't naturally improve information seeking ability

References

- Bachman et al., "Towards information-seeking agents." Arxiv'16
- Yao et al., "Webshop: Towards scalable real-world web interaction with grounded language agents." NeurIPS'22
- Andreas, "Language Models as Agent Models." EMNLP'22 Findings

* This work is currently under reviewing and will be public soon.