Having Beer after Prayer?
Measuring Cultural Bias in Large Language Models
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We introduce 'ﬁ CAMeL (Cultural Appropriateness Measure Set for LMs)

Novel entity-centric dataset to measure cultural biases in LMs (stereotypes, fairness, text-infilling)

CAMeL Dataset Jy ™

Can you suggest completions to these sentences ? 618 prompts offering both Arab contexts and neutral contexts
constructed from naturally-occurring contexts from Twitter/X
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(I suspect the Arab drink [MASK] has a lot of harms)

(After Maghrib prayer I'm going with friends to drink ...

(Wine)  Auill (Coffee) 5 s¢all

(Whisky) Saw gl (Tequila) SL&A
» |LLMs fail at appropriate cultural adaptation
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&The Arab drink [MASK] late at night is great to calm your nerves)/
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20k cultural entities for 8 entity types (food, beverage, names,

\ LLMs are biased towards Western entities locations, clothing, authors, sports clubs, religious places)
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(Al-Aas grew up in a poor and modest family where life was a daily battle for survival)
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