MATHWELL: Generating Educational Math Word Problems at Scale

Bryan Christ, Jonathan Kropko, Tom Hartvigsen

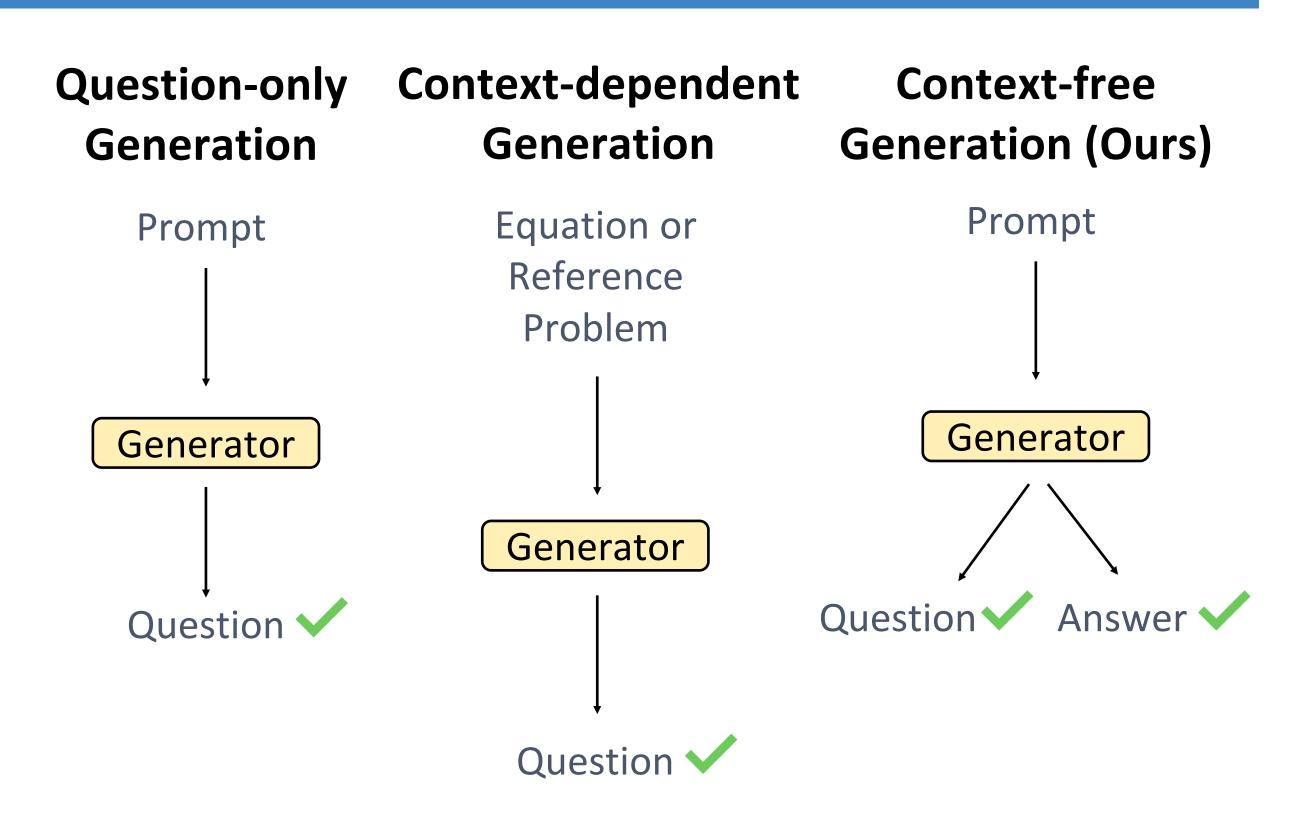
Contact: brc4cb@virginia.edu

SCHOOL of DATA SCIENCE

TLDR; We introduce context-free educational grade school math word problem generation and release a large dataset for this task.

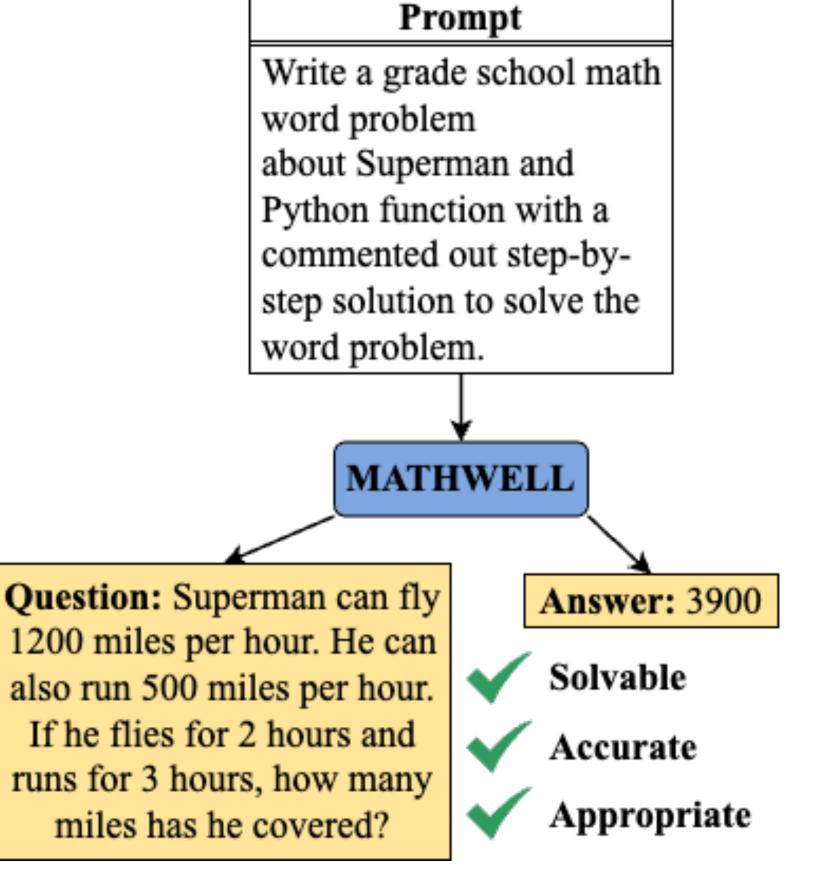
Word Problems are Critical K-8 Educational Tools

Math word problems assess the highest level of student knowledge and customizing them promotes student learning. However, writing these problems:


Is time consuming

EXPERTISE

Requires domain expertise

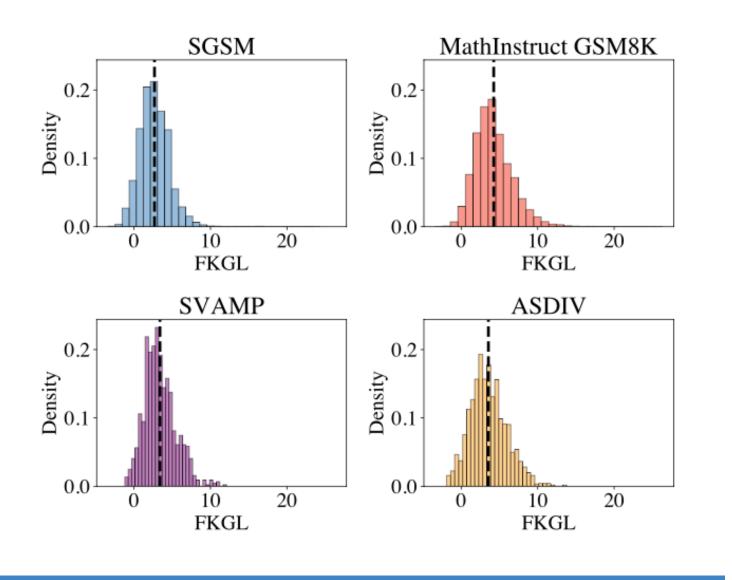

We need methods to automatically generate customized math word problems

Comparison with Prior Works

Existing methods require too much manual curation to be useful for teachers. Therefore, we propose context-free educational math word problem generation.

First Context-free Word Problem Generator: MATHWELL

MATHWELL generates customized educational math word problems and Python function solutions to these problems without the need for a pre-specified equation or reference problem. Generated problems are:

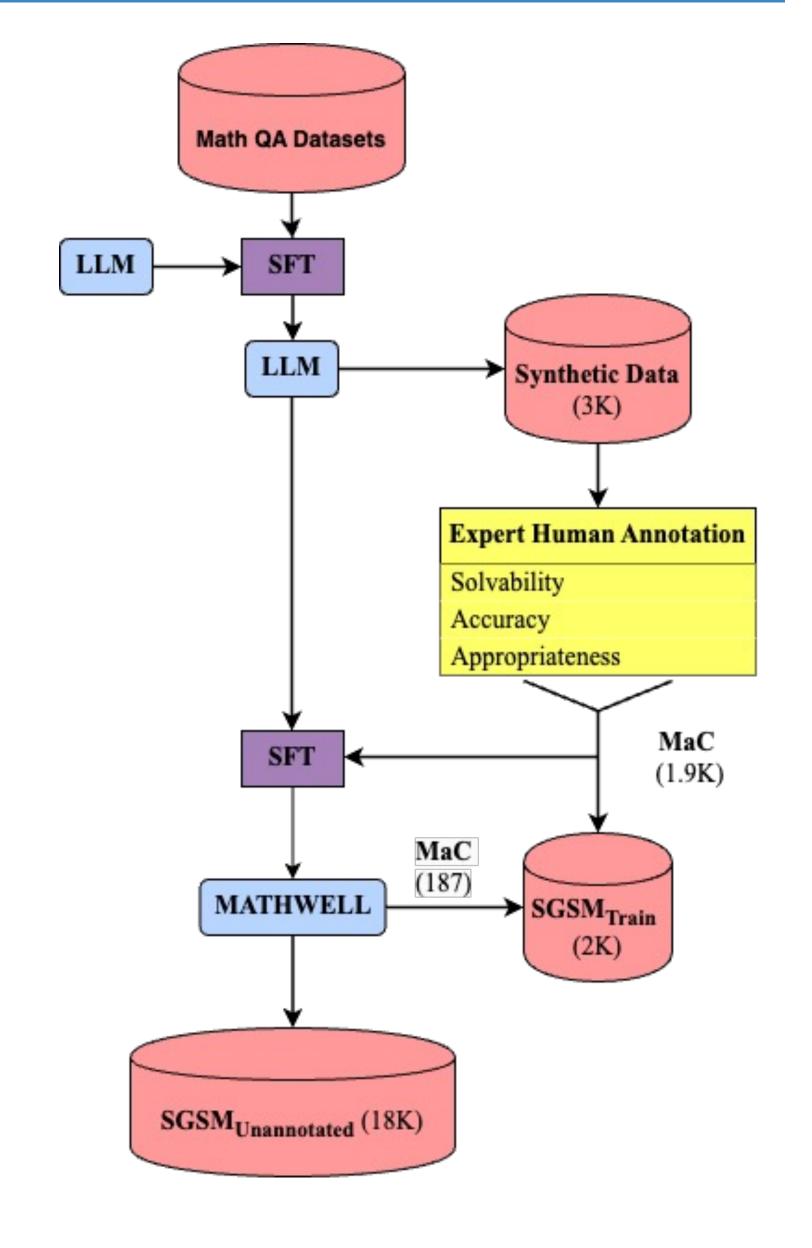

- Solvable: mathematically possible to solve
- 2. Accurate: solutions arrive at the correct answer
- Appropriate: mathematically and contextually appropriate for a young learner

New Dataset: Synthetic Grade School Math (SGSM)

Dataset	N	Program of	Python	Appropriate	Average	Flesch-	New Dale-	BERTScore
		Thought	Function	Difficulty	Length	Kincaid	Chall (NDC)	F1
		(PoT)			(tokens)	Grade Level	Readability	
						(FKGL)		
GSM-Hard	1,319	✓	√	Х	72.9 (25.6)	4.21 (2.43)	8.20 (1.13)	84.0
MathInstruct GSM8K	6,403	✓	X	✓	66.2 (23.9)	4.25 (2.48)	8.17 (1.13)	84.6
NumGLUE	12,403	✓	X	X	144.8 (136.5)	10.04 (6.99)	10.27 (1.51)	81.5
ASDIV	2,305	X	X	✓	45.1 (15.8)	3.56 (2.40)	7.85 (1.48)	85.5
SVAMP	1,000	X	X	✓	47.3 (11.7)	3.39 (2.07)	7.84 (1.09)	86.1
SGSM (Ours)	20,490	✓	✓	?	62.0 (15.0)	2.68 (1.97)	7.99 (1.26)	84.8
$SGSM_{Train}$	2,093	✓	\checkmark	✓	57.2 (15.7)	2.50 (1.76)	8.12 (1.25)	85.2
$SGSM_{Unannotated}$	18,397	✓	\checkmark	?	62.5 (14.8)	2.70 (1.99)	7.97 (1.26)	84.9

Advantages of SGSM:

- 1. Larger
- 2. Context-free
- 3. Mathematically appropriate
- 4. More readable
- 5. Human quality


Data Generation, Expert Annotation, and Finetuning

We conduct two rounds of supervised finetuning (SFT) to create MATHWELL using:

- 1. Existing math QA data
- 2. Synthetic data annotated by domain experts with gold labels for meets all criteria (MaC), denoting questions that are solvable, accurate, and appropriate

We use MATHWELL to generate Synthetic Grade School Math (SGSM), consisting of two subsets:

- 1. SGSM_{Train} with gold labels for MaC
- 2. SGSM_{Unnanotated} with executable code solutions but no labels

MATHWELL Outperforms Alternatives

Model	Solvability	Accuracy	Appropriateness	Meets all Criteria (MaC)	Topic Specificity	Executable Code	Executable Code/MaC
LLEMMA	48.8 (3.17)	63.9 (4.37)	41.8 (4.48)	15.2 (2.28)	94.8 (1.41)	24.3 (0.70)	3.70 (0.55)
MAmmoTH	86.8 (2.15)	94.9 (1.49)	67.7 (3.18)	56.8 (3.14)	97.6 (0.97)	6.90 (0.36)	3.91 (0.22)
Llama-2	84.0 (2.32)	89.5 (2.12)	81.0 (2.72)	62.4 (3.07)	99.2 (0.56)	55.4 (0.98)	34.6 (1.70)
MATHWELL	89.2 (1.97)	96.9 (1.17)	86.5 (2.29)	74.8* (2.75)	99.6 (0.40)	66.4* (1.00)	49.6* (1.83)

Model	$\mathbf{PPL}\downarrow$	BertScore	GSM8K	MaC	New Dale-Chall	MATHWELL	
		F1	BERTScore F1	Average Length	(NDC) Readability	outperforms	
LLEMMA	3.82 (0.10)	84.3	84.1	50.9 (2.89)	8.41 (0.09)	alternatives in	
MAmmoTH	2.76 (0.03)	86.0	84.7	44.4 (1.15)	8.25 (0.08)	مر م حدد بر ما را ما م	
Llama-2	2.52 (0.03)	85.5	84.3	49.8 (1.19)	8.20 (0.07)	both human	
MATHWELL	2.44 (0.03)	85.5	84.2	54.1 (0.97)	8.23 (0.08)	and automatic	
MATHW	/ELL	Llama-2				evaluations	

FKGL 0.2

MATHWELL outputs are:

- 1. More readable for the target age range (K-8)
- 2. Human quality
- 3. Highly customizable