THE DAUNTING DILEMMA WITH SENTENCE ENCODERS: GLOWING ON STANDARD BENCHMARKS, STRUGGLING WITH CAPTURING BASIC SEMANTIC PROPERTIES

By Yash Mahajan, Naman Bansal, Shubhra Kanti Karmaker *Auburn University*

Research Questions

Do existing Sentence Encoders really understand the basic semantic in the given text?

How robust and reliable they are?

Given a new Task at hand, which model to start with

Unsure.

To evaluate, we setup an unsupervised fashioned evaluation criteria

Proposed Criteria

■ Five basic semantic criteria*,

- Paraphrasing
- Synonym Replacement
- Paraphrase vs Sentence Jumbling
- Paraphrase vs Antonym Replacement
- Paraphrase without Negation

Criterion-1: Paraphrasing

• Expectation :

"A good sentence encoder should generate similar embeddings for two sentences which are paraphrases of each other"

Examples:

Original sentence

S: I like to read books.

Paraphrase sentence

S'_P : I enjoy reading literature.

Criterion 2: Synonym Replacement

Expectation:

"If we replace n words (where n is small) from sentence S with their respective synonyms to create another sentence S $_{\rm P}{'}$, a good sentence encoder will yield similar embeddings for S and S $_{\rm P}{'}$.

Examples:

Original sentence S: I like to read books.

Synonym Replaced sentence S'_{P} : I e

 S'_{P} : I enjoy to read books.

Criterion 3: Paraphrase vs Sentence Jumbling

Expectation:

Given a sentence S, its paraphrase S_{P}' and a jumbled sentence S_{J}' , S_{P}' should be semantically more similar to S compared to S_{J}' by some clear margin, i.e,

 $Sim(S, S_{P'}) - Sim(S, S_{J'}) > \epsilon 2$,

where $\epsilon 2$ denotes the expected minimum margin.

Examples:

Original sentence S: I like to read books.

Paraphrase sentence S'_{J} : I read to like books.

Criteria 4: Paraphrase vs Antonym Replacement

Expectation:

Given a sentence S, its paraphrase S $_{\rm P}'$ and an antonym-replaced sentence S $_{\rm A}'$, created by replacing exactly one word (verb or adjective) with its antonym, S $_{\rm P}'$ should be semantically more similar to S than S $_{\rm A}'$ to S by some clear margin, i.e.,

 $Sim(S, S_P') - Sim(S, S_A') > \epsilon 1$,

where $\epsilon 1$ denotes the expected minimum margin

Examples:

Original sentence S: I like to read books.

Paraphrase sentence S'_A : I hate to read books.

Criteria 5: Paraphrase without Negation

Expectation:

A "good" sentence encoder will recognize the semantic equivalence despite negation being present in S but not in S ', and thus produce high similarity scores

Examples:

Original sentence S: I like to read books.

Paraphrase sentence S'_A : I don't like to read books.

Motivation for Negation based Criteria

Dataset not having enough Negation sentences,

- For instance [1],

Datasets	# of sentences	% of Negation sentence
QQP	1,590,482	8.1
STS-b	17,256	7.1
SST-2	70,042	16.0

[1] Md Mosharaf Hossain, Dhivya Chinnappa, and Eduardo Blanco. 2022. An Analysis of Negation in Natural Language Understanding Corpora. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 716–723, Dublin, Ireland. Association for Computational Linguistics

Models Evaluated

- Classical Model
 - USE
 - Sentence-Bert
 - LASER
 - InferSent
 - Doc2Vec

- Large Language Models
 - GPT3-ada-text embedding
 - LlaMa2
 - Bloom
 - GPTNeo

Example of Curated data

Original Sentence: "Levin's attorney, Bo Hitchcock, declined to comment last Friday"

Perturbation	Example Sentence	Expected Encoding
Paraphrasing	Hitchcock has declined to comment on the case, as has Levin.	Similar to Original
Synonym Replacement	Levin's attorney, Bo Hitchcock, refused to comment last Friday.	Similar to Original
Antonym Replacement	Levin's attorney, Bo Hitchcock, accepted to comment last Friday.	Diverse from Original
Paraphrase without Negation	Levin's attorney, Bo Hitchcock, remained silent when asked for comment last Friday.	Similar to Original
Sentence Jumbling	Levin's attorney to Bo Hitchcock, declined, comment last Friday.	Diverse from Original

Table 1: Example of the five sentence perturbation proposed to evaluate sentence encoders. **Note**: This example in *"Paraphrasing without Negation"* is for illustration purposes only and it hasn't been utilized in our study. It showcases the sentence structure we'd encounter in Afin dataset (Hossain and Blanco, 2022) (see Section 5.1).

Dataset Curation

Paraphrasing

- No change in QQP, MRPC and, PAWS dataset

For,

- Synonym Replacement
- Antonym Replacement
- Sentence Jumbling

Sentence S was used as the original sentence to generate perturbed S' sentences from QQP*, PAWS*, and MRPC*, forming (S1, S') pairs.

- Paraphrasing without Negation
 - AFIN dataset

Results

- Criterion 1: Paraphrasing
 - Expectation : "A good sentence encoder should generate similar embeddings for two sentences which are paraphrases of each other"

Mod	el	USE	SBERT	Infer- Sent	LASER	D2V	Bloom	GPTNeo	GPT3- Ada	LlaMa-2
	Pos	0.7553	0.8526	0.3182	0.3652	0.2516	0.0059	0.2669	0.2609	0.4277
OOP	Neg	0.5278	0.5488	0.2849	0.3124	0.2368	0.0059	0.2512	0.2367	0.3734
~~-	Diff	0.2275	0.3038	0.0333	0.0528	0.0148	0.0001	0.0157	0.0242	0.0543
	Pos	0.8645	0.9506	0.3552	0.4268	0.5180	0.0059	0.2767	0.2719	0.4646
WIKI	Neg	0.8554	0.9408	0.3552	0.4136	0.5402	0.0059	0.2750	0.2703	0.4568
	Diff	0.0091	0.0098	0.0000	0.0132	-0.0222	0.0000	0.0016	0.0016	0.0077
	Pos	0.7098	0.8134	0.3367	0.3828	0.4440	0.0059	0.2706	0.2634	0.4442
MRPC	Neg	0.6097	0.5488	0.3256	0.3564	0.3700	0.0059	0.2652	0.2549	0.4243
	Diff	0.1001	0.2646	0.0111	0.0264	0.0740	0.0001	0.0053	0.0085	0.0198

- Criterion 2: Synonym Replacement
 - **Expectation:** "If we replace n words (where n is small) from sentence S with their respective synonyms to create another sentence S $_{P}$ ', a good sentence encoder will yield similar embeddings for S and S $_{P}$ '.

- Criterion 2: Synonym Replacement (Conti..)
 - When n > 1

Criterion 3: Paraphrase vs Antonym Replacement:

- **Expectation:** Given a sentence S, its paraphrase S $_{P}$ ' and an antonym-replaced sentence S $_{A}$ ', created by replacing exactly one word (verb or adjective) with its antonym, S $_{P}$ ' should be semantically more similar to S than S $_{A}$ ' to S by some clear margin, i.e., Sim(S, S $_{P}$ ') – Sim(S, S $_{A}$ ') > $\epsilon 1$,

where $\epsilon 1$ denotes the expected minimum margin

Criterion 4: Paraphrase without Negation

 Expectation: A "good" sentence encoder will recognize the semantic equivalence despite negation being present in S but not in S ', and thus produce high similarity scores

Model	USE	SBERT	Infer- sent	LASER	D2V	Bloom	GPTNeo	GPT3- Ada	LlaMa2
Avg. Sim. score	0.695	0.779	0.325	0.387	-0.001	0.006	0.267	0.260	0.423

Table 4: Criterion-4: Normalized Avg. similarity score of negation-affirmative sentence pair sentences from the AFIN dataset. The **blue** and **purple** indicate the best and second-best performer.

- Criterion 5: Paraphrase vs Sentence Jumbling
 - Expectation: Given a sentence S, its paraphrase S_p' and a jumbled sentence S_j', S_p' should be semantically more similar to S compared to S_j' by some clear margin, i.e, Sim(S, S_p') Sim(S, S_j') > ε2, where ε2 denotes the expected minimum margin

- Criterion 5: Paraphrase vs Sentence Jumbling (Conti..)
 - When n > 1

Conclusion

We need more robust benchmark datasets which also include granule semantic understanding, negation focused data. 3

Similarity metric like cosine similarity might be inadequate to capture granule semantic in high dimensional vector space.

Thank You!!!

Any Questions

Evaluation on SentEval Benchmark

Model	MR	CR	SUBJ	MPQA	SSTb	TREC	MRPC	Avg
SBERT	83.95	88.98	93.77	89.51	90.01	84.80	76.28	86.90
USE	75.58	81.83	91.87	87.17	85.68	92.20	69.62	83.42
Infersent	81.10	86.30	92.40	90.2	84.60	88.20	76.20	85.57
LASER	56.14	63.89	67.65	72.36	79.85	89.19	75.19	72.04
Doc2Vec	49.76	63.76	49.16	68.77	49.92	19.20	66.49	52.43
Bloom	71.69	80.72	92.09	84.48	84.46	88.80	66.84	81.29
GPTNeo	79.91	83.36	93.48	84.62	88.19	92.40	70.78	84.68
LlaMa-2	83.34	87.15	95.80	87.46	91.65	94.00	65.97	86.48
GPT3	88.36	93.08	95.31	91.29	93.63	96.00	73.97	90.23

- MR : Movie Reviews (pos/neg)
- CR : Product Reviews
- SUBJ : Subjective Movie Reviews
- MPQA : Opinion Polarity

- SSTb : Stanford Sentiment Treebank
- TREC : Question-type classification
- MRPC: Paraphrasing dataset

Model Comparison

Classical Models							Emergent Models				
	SBert	USE	LASER	InferSent	Doc2Vec	Bloom	LlaMa-2	GPT3.5	GPTNeo		
Developed By	Sent- Transform er	Google	Facebook	FAIR	Google + Stanford	BigScience	Facebook	OpenAl	EleutherAl		
Embedding Dimension	768	512	1024	4096	100-300	2048	4096	1536	2048		
Parameter	~110M	~110 M	~93M	~24M	Variable	~560M, ~1B, ~7B, ~176B	~7B, 13B, 70B	~175B	~1.3B, ~2.8B		
Size in GB	~0.4	~0.4	~0.4	~0.8	Variable	Variable (in 100s)	Variable (in 100s)	Variable	Variable (in 100s)		
GPU Req.	Х	Х	Х	Х	X	\checkmark	\checkmark	X	\checkmark		
Open- source	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	√*	X	\checkmark		

- Criterion 2: Synonym Replacement
 - **Expectation:** "If we replace n words (where n is small) from sentence S with their respective synonyms to create another sentence S $_{P}$ ', a good sentence encoder will yield similar embeddings for S and S $_{P}$ '.

		QQP			WIKI.		MPRC			
Models	n=1	n=2	n=3	n=1	n=2	n=3	n=1	n=2	n=3	
SBERT	0.898	0.831	0.775	0.945	0.909	0.874	0.929	0.879	0.829	
USE	0.814	0.736	0.672	0.865	0.821	0.78	0.864	0.819	0.774	
Infer-Sent	0.347	0.331	0.32	0.359	0.349	0.34	0.361	0.353	0.346	
LASER	0.417	0.399	0.387	0.432	0.425	0.418	0.43	0.423	0.415	
D2V	0.506	0.434	0.391	0.569	0.517	0.496	0.588	0.497	0.432	
Bloom	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	
GPTNeo	0.273	0.266	0.259	0.277	0.272	0.267	0.278	0.274	0.269	
GPT3 Ada	0.894	0.869	0.851	0.915	0.904	0.894	0.916	0.905	0.895	
LlaMa-2	0.443	0.393	0.347	0.462	0.433	0.398	0.463	0.43	0.388	

