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Abstract

Multi-agent interactions between Large Lan-
guage Model (LLM) agents have shown ma-
jor improvements on diverse reasoning tasks.
However, these involve long generations from
multiple models across several rounds, making
them expensive. Moreover, these multi-agent
approaches fail to provide a final, single model
for efficient inference. To address this, we intro-
duce MAGDI, a new method for structured dis-
tillation of the reasoning interactions between
multiple LLMs into smaller LMs. MAGDI
teaches smaller models by representing multi-
agent interactions as graphs, augmenting a base
student model with a graph encoder, and dis-
tilling knowledge using three objective func-
tions: next-token prediction, a contrastive loss
between correct and incorrect reasoning, and a
graph-based objective to model the interaction
structure. Experiments on seven widely-used
commonsense and math reasoning benchmarks
show that MAGDI improves smaller models’
reasoning, outperforming several methods that
distill from a single teacher and multiple teach-
ers. Moreover, MAGDI also shows an order
of magnitude higher efficiency over its teach-
ers. We conduct extensive analyses to show
that MAGDI (1) enhances the generalizabil-
ity to out-of-domain tasks, (2) scales positively
with the size and strength of the base student
model, and (3) obtains larger improvements
when applying self-consistency – an inference
technique that relies on model diversity.1

1 Introduction

Debate and dialogue are natural ways to improve
reasoning: we form our best ideas not in isolation,
but by refining and discussing them with others.
Similarly, we can improve Large Language Models
(LLMs) – which often exhibit impressive multi-step
reasoning capabilities (Wei et al., 2022; Kojima
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1Code/data: https://github.com/dinobby/MAGDi.
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Figure 1: Overview of our distillation method. Given a
reasoning problem, multiple teacher-LLMs engage in a
multi-round discussion, leading to the generation of a
multi-agent interaction graph (MAG). MAGDI distills
knowledge from these MAG into a base student model.

et al., 2022) – by allowing multiple LLM instances
to interact in a discussion (Du et al., 2023; Chen
et al., 2023b; Wu et al., 2023). These interactive
frameworks enable each agent to iteratively refine
its reasoning by obtaining feedback from others,
thereby leading to a better consensus at the end of
multiple interaction rounds.

Discussion frameworks are typically built on
top of proprietary models, e.g., GPT-4, Bard,
Claude, etc., which can act as general conversa-
tional agents, handle long contexts, and follow in-
structions (Bubeck et al., 2023). However, these
models are expensive, especially when used in
multi-round interactions, which require numerous
long-token length inference calls to the underlying
LLMs. Moreover, these frameworks do not result
in a final, joint model that can then be directly used
for inference and instead requires invoking all in-
teracting LLMs at test time. To reduce this cost
and train a small, affordable yet capable model,
we tackle the problem of teaching reasoning to
smaller language models via structured distilla-
tion of the interactions between multiple stronger
teacher models. Specifically, we develop a struc-
tured distillation method, Multi-Agent Interaction
Graphs Distillation (MAGDI), that enables a stu-
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dent model to learn from multi-teacher interactions,
with the goal of developing a performant and ef-
ficient standalone alternative to expensive multi-
agent setups. On seven benchmarks in both com-
monsense and math reasoning, we find increasing
improvements over distillation baselines as we in-
corporate more levels of teacher interactions.

To learn from teacher interaction structure, we
represent it in Multi-Agent Interaction Graphs
(MAG), a graph-based encoding of multi-agent in-
teractions. Concretely, a MAG is a directed acyclic
graph (DAG) wherein each node represents an
agent’s generation in a discussion round, annotated
with a binary label indicating whether the answer
is correct. The edges denote the discussion’s struc-
ture, indicating which previous turns agents are
responding to. Given a reasoning problem, MAGs
capture rich knowledge of (1) diverse pre- and post-
interaction correct reasoning chains generated by
different LLMs, (2) challenging incorrect reason-
ing chains generated by different LLMs that are
refined over interaction rounds, and (3) an iterative
and structured (graph-based) interaction process
that enables this refinement of model reasoning.
We capture all this knowledge via the following
four levels of MAG components, which are then
used in our distillation method, MAGDI.

Level 1: Learning from multiple teachers. The
student learns from the correct reasoning of multi-
ple teachers, rather than one.
Level 2: Learning from teacher interactions.
The student learns from both pre- and post-
interaction data between multiple teachers.
Level 3: Learning from negative reasoning. The
student additionally distills from negative or incor-
rect reasoning from the teacher models.
Level 4: Learning from structure. The stu-
dent learns from the output and graph-structure
of teacher LLM interactions.

Note that each level builds on the prior levels, moti-
vating our main Research Question: How can we
effectively distill from diverse teacher interactions
into a smaller, efficient student model across in-
creasing levels of interaction structure, also demon-
strating scalability and generalizability?

These levels also shape MAGDI, our structured
distillation method. MAGDI enables a student
model to learn from our graph-structured interac-
tion data (MAGs), with the goal of developing a per-
formant and efficient standalone substitute to costly
multi-agent systems. We first construct a training

dataset of MAGs from a high-performing multi-
agent discussion framework (Chen et al., 2023b),
featuring discussions between three API-based
LLMs: GPT-4, Bard, and Claude2. We then de-
velop student models augmented with a Graph Neu-
ral Network (GNN) for learning structure-aware
representations of positive (correct) and negative
(incorrect) reasoning chains and fine-tune them on
MAG data. MAGDI’s three fine-tuning objectives
are aligned to the four levels: (1) next-token pre-
diction (Levels 1-2), (2) a contrastive loss between
correct and incorrect reasoning (Level 3), and (3)
a graph-based node classification loss (Level 4).
These objectives capture all useful signals in MAGs
(i.e., teachers’ correct and incorrect reasoning and
the conversation structure).

We evaluate MAGDI’s effectiveness on seven
widely-used commonsense (StrategyQA, Common-
senseQA, ARC-c, BoolQ) and math (GSM8K,
MATH, SVAMP) reasoning benchmarks, consis-
tently establishing the following findings:

• Multi-teacher improves student performance.
Compared to distilling from a single teacher, dis-
tilling from multiple teachers improves student
model’s performance (Level 1).

• The value of teacher interactions: Distilling
from the post-interaction outputs of teachers fur-
ther improves students (Level 2).

• Negative reasoning helps. Adding a contrastive
objective to learn from incorrect reasoning pro-
vides a valuable signal (Level 3).

• Distilling from structure maximizes accuracy.
When MAGDI distills from the first 3 levels and
the structure of a MAG, the student achieves the
highest accuracy (Level 4).

• MAGDI balances performance with efficiency.
MAGDI-distilled models reduce the number of
tokens predicted by up to 9x while outperforming
all single-teacher distillation baselines.

Building on these results, we further analyze
MAGDI along the following axes: (1) Generaliz-
ability. MAGDI can be used to produce a unified
joint multi-task learning model that performs well
on multiple domains at once and also generalizes
well to held-out datasets not seen during training.
(2) Scalability. MAGDI scales positively with the
size and strength of the base student model. (3)
Diversity. The output diversity resulting from our
multi-teacher training improves self-consistency
(Wang et al., 2023), an inference-time ensemble
method relying on diverse model answers.
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