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Abstract

An emerging research question in human lan-
guage understanding is how well computational
language models (LMs) align with child lan-
guage acquisition. The starting point for our
work is the study of bilingual language acqui-
sition by Hoff et al. (2012). That study found
that monolingual children consistently outper-
formed bilingual children on single-language
understanding tasks, with a consistent and mea-
surable lag of less than three months. How-
ever, that study also found that bilingual chil-
dren have a comparable overall vocabulary size
to monolingual children. Here, we investi-
gate these questions computationally. We train
monolingual and bilingual LMs using the Baby-
BERTa architecture (Huebner et al., 2021). We
use English, German, and Spanish data col-
lected from the CHILDES dataset, with each
model trained for 10 epochs on approximately
2.8M tokens in each epoch. We document the
“development” of these models over training
and look for whether bilingual models show
the same lag and overall vocabulary size effects
as children. We hypothesize that we will see a
similar lag in LMs as in human children. In this
case, we argue that LMs are an effective tool
with which to computationally model human
language acquisition and that they serve as a
suitable basis for future research aligning LM
performance with human performance.

1 Background

We computationally model monolingual and bilin-
gual learning to identify whether LMs, like hu-
mans, demonstrate a “lag” in language understand-
ing. Hoff et al. (2012) evaluated 56 children learn-
ing only English (monolingual development) and
47 children learning English and Spanish simulta-
neously (bilingual development). The data were
collected at different stages of development. To
computationally model the same “lag” during de-
velopment, we pre-train several LMs on different
monolingual and bilingual language combinations

with similar vocabulary sizes. We then establish
a temporal measurement of growth by measuring
the accuracy of each model for intermediate check-
points during the training process. Through these
checkpoint evaluations, we will be able to see if
there is an alignment between the number of model
training steps and human growth.

2 Bilingual Dataset

We pre-train our language models using conversa-
tional transcripts of children. This cross-lingual
pre-training data is representative of child-level
grammar, extensive in its overall vocabulary, and
similar in content across languages. We draw
from CHILDES, a dataset aggregating an extensive
collection of conversational transcripts with chil-
dren in over 20 different languages (Macwhinney,
2000). CHILDES contains child-directed speech
and child-level grammar, encompasses a variety
of children’s ages, and contains similar content
across languages, making it a realistic simulation
for studying human language acquisition effects.
Additionally, the CHILDES repository has already
been used to simulate human-like language under-
standing when training transformer-based models
(Huebner et al., 2021). We first create various
training corpora across English, Spanish, and Ger-
man. We selected these three languages due to their
greater representation in the dataset, with each lan-
guage having higher total token counts compared
to several of the other languages available. The
training data are taken directly from CHILDES
transcripts and processed for pre-training.

3 Monolingual and Bilingual Simulation

For each pair of languages L1 and L2, we train
the monolingual and bilingual model combinations
defined in Table 2. The monolingual training is
self-explanatory. For the bilingual training, we use
three different data splits. For the L1-L2 shuffled
training, the two languages are randomly shuffled
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Task Description
Named Entity Recognition (NER) Identify named entities (people, places, etc.). (Sang, 2002)

(Sang and Meulder, 2003)
Part of Speech Tagging (POS) Assign parts of speech to tokens. (Zeman et al., 2019)
News Classification (NC) Categorize news articles given their headline and content.
Cross-lingual Natural Language Inference
(XNLI)

Determine whether one sentence entails another. (Conneau
et al., 2018)

Paraphrase Adversaries from Word Scram-
bling (PAWS-X)

Determine if one sentence paraphrases another. (Yang
et al., 2019)

Query-Ad Matching (QASDM) Determine whether an ad is relevant to a query.
Web Page Ranking (WPR) Determine whether a web page is relevant to a query.
Question-Answer Matching (QAM) Predict whether a question and answer are a pair.

Table 1: Evaluation benchmark: XGLUE tasks used to test the model checkpoints, as well as a short description of
each task.

Simulation type Language
Monolingual L1
Monolingual L2
Bilingual L1–L2 (shuffled)
Bilingual L1, L2 (sequential)
Bilingual L2, L1 (sequential)

Table 2: Different simulation types and the respective
pre-training languages. L1 and L2 refer to the two
languages under consideration.

within the training and evaluation datasets. For L1,
L2 sequential training, the two languages are evenly
split but sequenced in two blocks, i.e. with all L1
data preceding all L2 data in the training and eval-
uation datasets; for L2, L1 sequential, the ordering
of the blocks is reversed. Each dataset’s training
and evaluation splits are ≈2.8 million tokens and
≈120 thousand tokens in size, respectively.

4 Model Architecture and Training

To pre-train the models, we perform a Masked
Language Modeling task on untrained instances
of BabyBERTa. This is a newer model intended
as a suitable testbed for the alignment to human
language acquisition (Huebner et al., 2021). It
is a scaled-down version of RoBERTa, possessing
fewer layers and trained on a much smaller vocabu-
lary size, modifications which significantly reduce
the training time and compute power. Pre-training
is performed using the simpletransformers.ai MLM
framework (Rajapakse). All models are initialized
with random weights and trained for 10 epochs on
datasets of ≈2.8M tokens in each epoch, follow-
ing a similar procedure as the BabyBERTa models.
During pre-training, the model’s weights are check-
pointed at every 100 training steps, which are then

tested on language understanding benchmarks, to
understand how the model improves over time.

5 Model Evaluation

We use XGLUE, a benchmark tailored for the cross-
language pre-trained models, to evaluate perfor-
mance (Liang et al., 2020). We use a subset of the
tasks as seen in Table 1. We evaluate the perfor-
mance of each available intermediate checkpoint to
observe developmental trends. Each checkpoint’s
benchmark results are used as a proxy for language
understanding and acquisition. This enables us to
draw parallels to age-based language understand-
ing assessments.

6 Preliminary Results

We have conducted preliminary investigations of
the full set of models. Currently, we see that model
perplexity is lower for the monolingual models
after pre-training than the bilingual models, sup-
porting the “lag” prediction. Moreover, the sequen-
tial bilingual models appear to have lower perplex-
ity than the shuffled models. We are currently in
the process of testing the full set of models with
XGLUE and will report the results in the poster.

7 Potential Implications

Our results hope to indicate that lag may be quan-
tified as a time value during model pre-training,
which could estimate chronological measurement
during model language acquisition. Additionally, if
the models do demonstrate a similar lag to children,
this could open future work applying insights from
children to creating multilingual models. Lastly,
we intend to release the checkpointed models to
the public as tools for future experiments on com-
putational and human language acquisition.
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