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1 Introduction

Large language models (LLMs) such as GPT-4
have exhibited remarkable performance in reason-
ing tasks (Rae et al., 2021; Lewkowycz et al., 2022;
Zhong et al., 2023). Because of the intensive com-
puting resources required for LLM, we are moti-
vated to study strategies for reducing the costs of
using LLMs while not sacrificing task performance,
particularly for LLMs’ applications to reasoning
tasks. Our intuition is that simple questions could
be answered by the weaker but more affordable
LLM, whereas only the difficult questions need to
be tackled by the more expensive, stronger LLM.

Chen et al. (2023) explored the idea of “LLM
cascades”, where a question is always first an-
swered by a weaker LLM, and then optionally
routed to a stronger LLM when the the weaker
LLM’s answer is not accepted. To decide this rout-
ing, this work suggested fine-tuning a smaller LLM
to score each question along with its answer pro-
duced by the weaker LLM. While this approach
could work for some tasks, in practice, we observed
that it did not yield satisfying performance for in-
tricate reasoning tasks. Intuitively, it is very chal-
lenging to evaluate the difficulty and the answer
correctness of a reasoning question solely based
on its literal expression, even with a large enough
LLM, since the errors could be nuanced despite
the reasoning paths appearing promising (Madaan
et al., 2023).

In this work, we proposed to devise this routing
decision-maker from a different angle, i.e., the “an-
swer consistency” of the weaker LLM (Wang et al.,
2023). In particular, we proposed to leverage a
“mixture of thought (MoT) representations”, which
samples answers from both Chain-of-Thought (Wei
et al., 2022, CoT) and Program-of-Thought (Chen
et al., 2022; Gao et al., 2023, PoT) prompts, emu-
lating how experts can provide diverse perspectives
to the same question. Our approaches based on a

mixture of thought representations achieved com-
parable task performance with only 40% of the cost
of GPT-4.

2 LLM Cascades for Cost-Efficient
Reasoning

The core of our LLM cascade is the decision maker,
which takes in the output from the weaker LLM,
and then decides whether to route to the stronger
LLM or not. We propose two methodologies based
on the “answer consistency” of the weaker LLM.

Answer Consistency and Sources of Sampling
Answer consistency has been found helpful for
improving the LLM performance in reasoning
tasks (Wang et al., 2023). Drawing inspiration
from prior works, we make the following hypothe-
sis: When the weaker LLM samples highly consis-
tent answers for a given question, it reveals a high
“confidence” in solving this question. In this case,
there is thus no need to invoke the stronger LLM.
While existing literature typically investigated ei-
ther CoT or PoT independently, in this work, we
propose to leverage the synergy of both thought
representations in a single task. We hypothesize
that an LLM obtains truly high confidence in its
problem-solving, only when it is able to produce a
consistent answer agnostic to how the intermediate
steps are represented. Therefore, we propose to
sample the weaker LLM answers from a “mixture
of thought (MoT) representations”, which includes
both CoT and PoT prompts.

Method 1: Vote-based decision-making The
first method calculates the consistency of the
weaker LLM’s answer samples by voting. The
most consistent answer can be selected as the one
that most samples agree with, and this answer will
also be regarded as the final answer Aw by the
weaker LLM. The decision maker measures the
weaker LLM’s consistency via the agreement score.
The larger the score is, the more consistent the
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Figure 1: An overview of our approaches (6 vote-based and 4 verification-based). We use to represent the answers
from PoT and to represent the answers from CoT. Demoi is the i-th set of demonstrations.

0.2 0.4 0.6 0.8 1.0
Relative Cost

0.825
0.850
0.875
0.900
0.925

Ta
sk

 A
cc

ur
ac

y

Average

GPT-3.5-CoT-SC
GPT-3.5-PoT-SC
GPT-4-CoT-SC
GPT-4-PoT-SC
GPT-4-CoT-Greedy
GPT-4-PoT-Greedy

CoT-1D-Vote
PoT-1D-Vote
MoT-1D-Vote
CoT-2D-Vote
PoT-2D-Vote
MoT-2D-Vote

CoT-2D-Verify
PoT-2D-Verify
MoT-1D-Verify
MoT-2D-Verify
 

Figure 2: The average performance over 6 reasoning
datasets.

weaker LLM’s answer samples. In conjunction
with a pre-defined threshold value, the decision
maker accepts the weaker LLM’s most consistent
answer Aw when the agreement score is higher
than the threshold and rejects it otherwise. As a
result, the total cost of answering a question can
vary depending on the threshold.
Method 2: Verification-based decision-making
In the case of producing samples from two differ-
ent prompt settings (i.e., different demonstrations
or thought representations), we propose the sec-
ond method, which compares the most consistent
answers produced by each prompt. Our method
verifies the most consistent answers within each
prompt. Only when the two answers are the same,
the weaker LLM’s answer will be accepted by the
decision maker. In this case, the final answer of
the weaker LLM will be the same as the two most
consistent answers.

3 Experiment

The details of our experiment are shown in Ap-
pendix A. The conclusions are:

• Our pipeline achieves comparable task per-
formance with significantly reduced costs.On
average, all of our cascade variants demon-
strate significant cost efficiency. In particular,

as shown in the average plot, the four MoT
variants achieve comparable task performance
(∼0.929 accuracy) to GPT-4-CoT-SC (0.931)
while demanding only 40% of its cost.

• Sampling from diverse prompt settings helps
cascade decision-making. Mixing thought
representations is particularly effective. In-
tuitively, this is because different thought rep-
resentations can bring in more diverse “opin-
ions” of the weaker LLM on the same input
question, resembling how a group of experts
with diverse perspectives could contribute to
more effective results in collaborative work.

4 Future work

We identify some potential avenues for future re-
search. One extension could be focusing on ex-
tending our methods to broad tasks. We could gen-
eralize the answer consistency checking to some
more complicated applications and integrate other
metrics, such as semantic similarity, to evaluate the
consistency of the general textual generation tasks.

Another possible extension could be to gener-
alize our approach in complex reasoning tasks to
facility question decomposition. In complex rea-
soning tasks, it is usually necessary to decompose
the question into multiple subquestions. Knowing
what granularity of decomposition is sufficient and
when to stop the decomposition is vital. We can
use the answer consistency with different represen-
tations to determine whether LLM can solve those
subquestions. If not, further processing may be
required, such as continuing decomposition.
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A Experiment
A.1 Experimental Setting

We evaluate our LLM cascade approaches on six
datasets, covering (1) mathematical reasoning, in-
cluding GSM8k (Cobbe et al., 2021), ASDIV (Ling
et al., 2017), and TabMWP (Lu et al., 2023);
(2) symbolic reasoning from BIG-Bench Hard
(bench authors, 2023), including DATE and Navi-
gate; and (3) causal reasoning, including CREPE
(Zhang et al., 2023). In our pipeline, we lever-
age the GPT-3.5-turbo (4k context) as the weaker
LLM and the GPT-4 (8k context) with CoT self-
consistency (Wang et al., 2023, SC) as the stronger
LLM. Throughout our experiments, we set the num-
ber of task demonstrations as M = 8. We set the
number of sampling paths as K = 20 for GPT-
3.5-turbo and K = 3 for GPT-4. The sampling
temperature by default is 0.4 for both LLMs. The
metrics we use are the task accuracy and the rel-
ative cost compared with the cost of GPT-4 with
CoT SC (denoted as GPT-4-CoT-SC).

A.2 Main Results

Figure 3 illustrates the performance of our pro-
posed approaches. For Vote-based approaches, we
draw curves by changing the pre-defined threshold
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Figure 3: Main experiment results over six reasoning datasets. The bottom figure represents the average performance.

τ varying from 0.4 to 1. A high value of thresh-
old signifies a more rigorous criterion for trusting
the answers from the weaker LLM, making more
examples transferred to the stronger LLM. Our ob-
servations are as follows:

Our pipeline achieves comparable task perfor-
mance with significantly reduced costs. On av-
erage, all of our cascade variants (Vote or Verify)
demonstrate significant cost efficiency. In particu-
lar, as shown in the average plot, the four MoT vari-
ants achieve comparable task performance (∼0.929
accuracy) to GPT-4-CoT-SC (0.931) while demand-
ing only 40% of its cost.

Sampling from diverse prompt settings helps
cascade decision-making. Our results show that
variants involving diverse sources of sampling,
such as CoT/PoT-2D-Vote and MoT-1D/2D-Vote,
can more precisely distinguish between easy
and hard reasoning questions, compared with
their counterparts sampling from single sources,
i.e., CoT/PoT-1D-Vote. For example, between
CoT-2D-Vote and CoT-1D-Vote, the former out-
performs the latter by 1.4% absolute accuracy un-
der the same relative cost of 0.4 on average.

Mixing thought representations is particu-
larly effective. Furthermore, we find that
mixing the two thought representations (i.e.,
MoT-1D/2D-Vote) outperforms decision-making
using either of them (i.e., CoT-1D/2D-vote and
PoT-1D/2D-vote). Intuitively, this is because dif-

ferent thought representations can bring in more
diverse “opinions” of the weaker LLM on the same
input question, resembling how a group of experts
with diverse perspectives could contribute to more
effective results in collaborative work. We also note
that when using MoT, no obvious difference is per-
ceived between using one set (i.e., MoT-1D-Vote)
or two sets (i.e., MoT-2D-Vote) of task demonstra-
tions. This result reveals that tuning the thought
representations is more helpful for measuring an
LLM’s (un)certainty on its answer than tuning the
task demonstrations.


