
REGAL: Refactoring Programs to Discover Generalizable Abstractions

Elias Stengel-Eskin∗ Archiki Prasad∗ Mohit Bansal
UNC Chapel Hill

{esteng, archiki, mbansal}@cs.unc.edu

Abstract

While large language models (LLMs) are in-
creasingly being used for program synthe-
sis, they lack the global view needed to de-
velop useful abstractions; they generally pre-
dict programs one at a time, often repeating the
same functionality. Generating redundant code
from scratch is both inefficient and error-prone.
To address this, we propose Refactoring for
Generalizable Abstraction Learning (REGAL),
a gradient-free method for learning a library
of reusable functions via code refactorization,
i.e., restructuring code without changing its ex-
ecution output. REGAL learns from a small
set of existing programs, iteratively verifying
and refining its abstractions via execution. We
find that the shared function libraries discov-
ered by REGAL make programs easier to pre-
dict across diverse domains. On three datasets
(LOGO graphics generation, Date reasoning,
and TextCraft, a Minecraft-based text-game),
both open-source and proprietary LLMs im-
prove in accuracy when predicting programs
with REGAL functions. For CodeLlama-13B,
REGAL results in absolute accuracy increases
of 11.5% on LOGO, 26.1% on date understand-
ing, and 8.1% on TextCraft, outperforming
GPT-3.5 in two of three domains. Our anal-
ysis reveals REGAL’s abstractions encapsulate
frequently-used subroutines as well as environ-
ment dynamics.1

1 Introduction

An increasing range of tasks can be tackled by
using a large language model (LLM) to gener-
ate an executable program for a given query; this
paradigm has been applied in computer vision
(Surís et al., 2023; Gupta et al., 2018; Cho et al.,
2023), robotics (Ahn et al., 2022; Singh et al.,
2023), tool use (Schick et al., 2023; Lu et al., 2023;
Qin et al., 2023), and complex reasoning (Lyu et al.,

*Equal Contribution
1Our full paper and code are publicly available.

Q: A small 9 gon and a
smallQ: A small 9 gon to the left

of a small 5 gon
 for i in range(9):
 forward(2)
 left(40.0)
 penup();forward(8)
 pendown()
 for i in range(5):
 forward(2)
 left(72.0)

for j in range(6):
 forward(4)
 #Incorrect reasoning
 for i in range(9):
 forward(2)
 left(40.5)#Math error
 left(60.0)

Q: 6-sided snowflake with a
line and small 9 gon as arms

Q: 6 sided snowflake with a
line and small 9 gon as arms
for j in range(6):
 # Correct reasoning
 embed('forward(4)
 draw_small_9gon()',#Reuse
 locals())
 left(60.0)

ReGAL: Discovers abstractions that
can be reused as helper functions

draw_small_5_gon()

draw_small_9_gon() Code
Bank

generating programs from scratch

draw...

draw...

 fetch
helpers

Figure 1: REGAL trains by refactoring primitive-only
programs into abstractions that are verified and stored.
This has two benefits: Reusability: Rewriting the same
code multiple times leads to errors; Abstraction: RE-
GAL makes prediction easier by allowing matching
between the query and the abstractions.

2023). In all these cases, the overall program gener-
ation framework is the same: an individual query is
given (along with an instructive prompt) to an LLM,
which produces a program that, when executed,
yields the desired result. Crucially, each program is
generated independently (as shown in Fig. 1), with
no reference to other queries or programs, and is
composed of primitive operations, i.e., the domain
language’s built-in operations. This approach has
two major and related limitations:

1) Lack of Reusability: Each program is de-
signed as a one-off script to solve a given example
but is not reused by other examples. This increases
redundancy and can result in unnecessary errors:
for two examples requiring a shared subroutine, the
model might correctly generate the subroutine in
one example and make a mistake in the other. For
instance, in Fig. 1 (top) although the “primitive-
only” model had previously generated nonagons, it
draws a polygon with an incorrect angle. REGAL’s
draw_small_9gon() function, on the other hand,
executes correctly.

2) Lack of Abstraction: Shared abstractions
can improve accuracy by making skills more acces-
sible to the model. When generating from primi-
tives alone, the model must interpret the query and
generate the correct mapping from the query to

https://arxiv.org/abs/2401.16467
https://github.com/esteng/regal_program_learning

multiple primitives, requiring more reasoning. The
model’s overall task becomes easier when it uses
interpretable abstractions, as it is choosing a func-
tion name from a library instead of reasoning from
scratch. In Fig. 1 (bottom) a model augmented with
abstractions can match the sub-query “a small 9
gon” to draw_small_9gon(); with this part of the
task simplified, the model reasons correctly about
the remaining code, while the primitive-only model
fails to correctly embed the shape in a loop.

Both limitations can be traced to a lack of global
context as the model sees each example separately,
so it lacks a mechanism for developing reusable
abstractions. This differs greatly from how hu-
mans write code: generally, developers might start
solving individual tasks with one-off solutions, but
quickly begin to develop a library of shared ab-
stractions and code snippets for related problems,
thereby reducing redundancy in their code, promot-
ing efficiency and readability (McConnell, 2004;
Downey, 2012). Furthermore, functions can be
verified: once we have tested a function, we can
rely on it in the future – something that is harder to
do for ever-changing one-off code snippets. Such
abstraction and verification is only sensible if the
code synthesis process takes place over the course
of multiple examples. In other words, if presented
with a single, one-off task, there is no reason not to
write a one-off script.

While abstraction offers numerous benefits, it
comes with the risk of over-fitting, where a func-
tion tailored to a specific example loses its general-
izability. For instance, in Fig. 1, a function like
draw_9gon_snowflake() may perfectly match
one example but fails to generalize. Conversely,
draw_small_9gon() is a more versatile function
applicable in various contexts. The ability to pro-
duce novel programs using primitive operations
needs to be balanced with the benefits of encoding
subroutines into reusable abstractions (O’Donnell,
2015). A similar balance between flexibility and
efficiency appears in a variety of domains, includ-
ing language (O’Donnell, 2015; Yang, 2016), bi-
ology (Futuyma and Moreno, 1988), manufactur-
ing (Flynn and Jacobs, 1987), and programming
(Ellis et al., 2021). To strike this balance in LLM-
based program synthesis, we propose Refactoring
for Generalizable Abstraction Learning (REGAL).
REGAL refines abstractions iteratively by refactor-
ing programs as well as verifying, correcting, and
pruning abstractions such that overly specific or

incorrect programs are improved upon or removed.
REGAL relies on two key elements: a small set
of programs using primitive operations (i.e., primi-
tive programs) and an execution environment (e.g.,
Python). Importantly, we show REGAL can learn
from LLM-generated programs without requiring
any human annotations.

REGAL follows a familiar train-test paradigm:
during REGAL’s modular training phase, it itera-
tively refactors a small set of (query, program) ex-
amples to produce a library of useful abstractions.
REGAL uses an LLM to write helper functions
for a batch of examples, which are verified against
the expected result; successful helper functions are
added to the library and the refactored program
serves as an example of the function’s usage. RE-
GAL can take success feedback into account to
correct and debug errors, and it periodically edits
the helper functions to make them more general-
izable or – if they cannot be made more generic –
prunes functions that are overly specific. Note that
the training is gradient-free, relying on a frozen
LLM to refactor programs. In the testing phase,
an LLM agent is tasked with predicting programs
for test queries. The agent has access to REGAL’s
library of helper functions and demonstrations of
how to use them.

We demonstrate the broad applicability of RE-
GAL by testing it on three diverse datasets: LOGO
(Ellis et al., 2021; Wong et al., 2021), a program
induction task; a date reasoning task (Srivastava
et al., 2022) known to challenge LLMs (Suzgun
et al., 2022); and TextCraft (Prasad et al., 2023),
a text-based game for crafting Minecraft objects.
Across these tasks, REGAL significantly improves
the accuracy of the predicted programs from vari-
ous LLMs – especially open-source LLMs – over
a baseline that predicts primitive programs (i.e.,
programs without REGAL’s abstractions). For in-
stance, CodeLlama-13B’s (Roziere et al., 2023)
accuracy increases by 11.5%, 26.1%, and 8.1%
on LOGO, Date, and TextCraft respectively, sur-
passing larger models like GPT-3.5 (Ouyang et al.,
2022). Moreover, we show that REGAL’s abstrac-
tions are reusable across examples, encapsulate key
domain functionalities, and we include an error
analysis further highlighting the features that make
REGAL effective. Finally, we show that REGAL
can improve over baseline primitive programs with
minimal examples, yielding major improvements
even with a 50% reduced training set.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yev-

gen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,
Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-
month, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-
las Sievers, Clayton Tan, Alexander Toshev, Vincent
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. 2022. Do as i can
and not as i say: Grounding language in robotic af-
fordances. In arXiv preprint arXiv:2204.01691.

Jaemin Cho, Abhay Zala, and Mohit Bansal. 2023. Vi-
sual programming for text-to-image generation and
evaluation. Thirty-seventh Conference on Neural In-
formation Processing Systems (NeurIPS).

Allen Downey. 2012. Think python. " O’Reilly Media,
Inc.".

Kevin Ellis, Lio Wong, Maxwell Nye, Mathias Sablé-
Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Ar-
mando Solar-Lezama, and Joshua B Tenenbaum.
2021. Dreamcoder: Bootstrapping inductive pro-
gram synthesis with wake-sleep library learning. In
Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language De-
sign and Implementation, pages 835–850.

Barbara B Flynn and F Robert Jacobs. 1987. Appli-
cations and implementation: an experimental com-
parison of cellular (group technology) layout with
process layout. Decision Sciences, 18(4):562–581.

Douglas J Futuyma and Gabriel Moreno. 1988. The
evolution of ecological specialization. Annual review
of Ecology and Systematics, 19(1):207–233.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific

Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305–329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Steve McConnell. 2004. Code complete. Pearson Edu-
cation.

Timothy J O’Donnell. 2015. Productivity and reuse in
language: A theory of linguistic computation and
storage. MIT Press.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2023. Adapt: As-needed decompo-
sition and planning with language models. arXiv
preprint arXiv:2311.05772.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. ToolLLM: Facilitating large
language models to master 16000+ real-world APIs.
arXiv preprint arXiv:2307.16789.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
Prompt: Generating situated robot task plans us-
ing Large Language Models. In 2023 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), pages 11523–11530. IEEE.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
ViperGPT: Visual inference via Python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny

https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://aclanthology.org/2023.ijcnlp-main.20
https://aclanthology.org/2023.ijcnlp-main.20

Zhou, et al. 2022. Challenging Big-Bench tasks
and whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Lio Wong, Kevin M Ellis, Joshua Tenenbaum, and Ja-
cob Andreas. 2021. Leveraging language to learn
program abstractions and search heuristics. In In-
ternational Conference on Machine Learning, pages
11193–11204. PMLR.

Charles Yang. 2016. The price of linguistic productivity:
How children learn to break the rules of language.
MIT press.

