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Abstract

While large language models (LLMs) are in-
creasingly being used for program synthe-
sis, they lack the global view needed to de-
velop useful abstractions; they generally pre-
dict programs one at a time, often repeating the
same functionality. Generating redundant code
from scratch is both inefficient and error-prone.
To address this, we propose Refactoring for
Generalizable Abstraction Learning (REGAL),
a gradient-free method for learning a library
of reusable functions via code refactorization,
i.e., restructuring code without changing its ex-
ecution output. REGAL learns from a small
set of existing programs, iteratively verifying
and refining its abstractions via execution. We
find that the shared function libraries discov-
ered by REGAL make programs easier to pre-
dict across diverse domains. On three datasets
(LOGO graphics generation, Date reasoning,
and TextCraft, a Minecraft-based text-game),
both open-source and proprietary LLMs im-
prove in accuracy when predicting programs
with REGAL functions. For CodeLlama-13B,
REGAL results in absolute accuracy increases
of 11.5% on LOGO, 26.1% on date understand-
ing, and 8.1% on TextCraft, outperforming
GPT-3.5 in two of three domains. Our anal-
ysis reveals REGAL’s abstractions encapsulate
frequently-used subroutines as well as environ-
ment dynamics.1

1 Introduction

An increasing range of tasks can be tackled by
using a large language model (LLM) to gener-
ate an executable program for a given query; this
paradigm has been applied in computer vision
(Surís et al., 2023; Gupta et al., 2018; Cho et al.,
2023), robotics (Ahn et al., 2022; Singh et al.,
2023), tool use (Schick et al., 2023; Lu et al., 2023;
Qin et al., 2023), and complex reasoning (Lyu et al.,
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Figure 1: REGAL trains by refactoring primitive-only
programs into abstractions that are verified and stored.
This has two benefits: Reusability: Rewriting the same
code multiple times leads to errors; Abstraction: RE-
GAL makes prediction easier by allowing matching
between the query and the abstractions.

2023). In all these cases, the overall program gener-
ation framework is the same: an individual query is
given (along with an instructive prompt) to an LLM,
which produces a program that, when executed,
yields the desired result. Crucially, each program is
generated independently (as shown in Fig. 1), with
no reference to other queries or programs, and is
composed of primitive operations, i.e., the domain
language’s built-in operations. This approach has
two major and related limitations:

1) Lack of Reusability: Each program is de-
signed as a one-off script to solve a given example
but is not reused by other examples. This increases
redundancy and can result in unnecessary errors:
for two examples requiring a shared subroutine, the
model might correctly generate the subroutine in
one example and make a mistake in the other. For
instance, in Fig. 1 (top) although the “primitive-
only” model had previously generated nonagons, it
draws a polygon with an incorrect angle. REGAL’s
draw_small_9gon() function, on the other hand,
executes correctly.

2) Lack of Abstraction: Shared abstractions
can improve accuracy by making skills more acces-
sible to the model. When generating from primi-
tives alone, the model must interpret the query and
generate the correct mapping from the query to
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multiple primitives, requiring more reasoning. The
model’s overall task becomes easier when it uses
interpretable abstractions, as it is choosing a func-
tion name from a library instead of reasoning from
scratch. In Fig. 1 (bottom) a model augmented with
abstractions can match the sub-query “a small 9
gon” to draw_small_9gon(); with this part of the
task simplified, the model reasons correctly about
the remaining code, while the primitive-only model
fails to correctly embed the shape in a loop.

Both limitations can be traced to a lack of global
context as the model sees each example separately,
so it lacks a mechanism for developing reusable
abstractions. This differs greatly from how hu-
mans write code: generally, developers might start
solving individual tasks with one-off solutions, but
quickly begin to develop a library of shared ab-
stractions and code snippets for related problems,
thereby reducing redundancy in their code, promot-
ing efficiency and readability (McConnell, 2004;
Downey, 2012). Furthermore, functions can be
verified: once we have tested a function, we can
rely on it in the future – something that is harder to
do for ever-changing one-off code snippets. Such
abstraction and verification is only sensible if the
code synthesis process takes place over the course
of multiple examples. In other words, if presented
with a single, one-off task, there is no reason not to
write a one-off script.

While abstraction offers numerous benefits, it
comes with the risk of over-fitting, where a func-
tion tailored to a specific example loses its general-
izability. For instance, in Fig. 1, a function like
draw_9gon_snowflake() may perfectly match
one example but fails to generalize. Conversely,
draw_small_9gon() is a more versatile function
applicable in various contexts. The ability to pro-
duce novel programs using primitive operations
needs to be balanced with the benefits of encoding
subroutines into reusable abstractions (O’Donnell,
2015). A similar balance between flexibility and
efficiency appears in a variety of domains, includ-
ing language (O’Donnell, 2015; Yang, 2016), bi-
ology (Futuyma and Moreno, 1988), manufactur-
ing (Flynn and Jacobs, 1987), and programming
(Ellis et al., 2021). To strike this balance in LLM-
based program synthesis, we propose Refactoring
for Generalizable Abstraction Learning (REGAL).
REGAL refines abstractions iteratively by refactor-
ing programs as well as verifying, correcting, and
pruning abstractions such that overly specific or

incorrect programs are improved upon or removed.
REGAL relies on two key elements: a small set
of programs using primitive operations (i.e., primi-
tive programs) and an execution environment (e.g.,
Python). Importantly, we show REGAL can learn
from LLM-generated programs without requiring
any human annotations.

REGAL follows a familiar train-test paradigm:
during REGAL’s modular training phase, it itera-
tively refactors a small set of (query, program) ex-
amples to produce a library of useful abstractions.
REGAL uses an LLM to write helper functions
for a batch of examples, which are verified against
the expected result; successful helper functions are
added to the library and the refactored program
serves as an example of the function’s usage. RE-
GAL can take success feedback into account to
correct and debug errors, and it periodically edits
the helper functions to make them more general-
izable or – if they cannot be made more generic –
prunes functions that are overly specific. Note that
the training is gradient-free, relying on a frozen
LLM to refactor programs. In the testing phase,
an LLM agent is tasked with predicting programs
for test queries. The agent has access to REGAL’s
library of helper functions and demonstrations of
how to use them.

We demonstrate the broad applicability of RE-
GAL by testing it on three diverse datasets: LOGO
(Ellis et al., 2021; Wong et al., 2021), a program
induction task; a date reasoning task (Srivastava
et al., 2022) known to challenge LLMs (Suzgun
et al., 2022); and TextCraft (Prasad et al., 2023),
a text-based game for crafting Minecraft objects.
Across these tasks, REGAL significantly improves
the accuracy of the predicted programs from vari-
ous LLMs – especially open-source LLMs – over
a baseline that predicts primitive programs (i.e.,
programs without REGAL’s abstractions). For in-
stance, CodeLlama-13B’s (Roziere et al., 2023)
accuracy increases by 11.5%, 26.1%, and 8.1%
on LOGO, Date, and TextCraft respectively, sur-
passing larger models like GPT-3.5 (Ouyang et al.,
2022). Moreover, we show that REGAL’s abstrac-
tions are reusable across examples, encapsulate key
domain functionalities, and we include an error
analysis further highlighting the features that make
REGAL effective. Finally, we show that REGAL
can improve over baseline primitive programs with
minimal examples, yielding major improvements
even with a 50% reduced training set.
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