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Abstract

An emerging area of research in situated con-
versational AI is the creation of a Virtual Re-
search Assistant (VRA). The VRA is a con-
versational agent that supports and amplifies
human research. Among other challenges, the
VRA must be capable of contextual dialogue
grounded in scientific papers. An important
element of conversational scientific papers is
interpreting document-grounded equations to
support an open dialogue question-answering
interaction with the human researcher. This
work introduces CONVERSATIONAL EQUA-
TIONS (cEQNS), a dataset of multi-turn con-
versational question-answer pairs grounded in
equations and their associated references from
scientific documents available on arXiv.

1 Introduction

An ongoing challenge in AI research is the devel-
opment of conversational assistants that effectively
engage in dialogue using structured knowledge
(Sundar and Heck, 2022), particularly in handling
scientific literature via a Virtual Research Assis-
tant (VRA). This task is critical due to the ever-
increasing volume of scientific papers and the com-
plexity of their multimodal content, including text,
images of models and processes, tables and charts
for data comparison, and mathematical equations.

In particular, equations are crucial for grasping
mathematical concepts in scientific texts but can be
challenging to interpret, especially for beginners
or with new formulations. They frequently rely
on notation introduced elsewhere in the document,
and require readers to review the entire text.

Motivated by these challenges, the task of mod-
eling mathematical equations and natural language
text has become a topic of active research. Prior
work has focused on retrieving equations, gener-
ating natural language text conditioned on equa-
tions, grounding equations in descriptions, and
solving math word problems (Chiang and Chen,

2019; Wang et al., 2021a; Peng et al., 2021). How-
ever, a primary challenge in understanding math-
ematical equations is to build a VRA capable of
answering questions in a conversational context,
the construction of which necessitates a dataset
of conversations situated in document-grounded
mathematical equations which does not yet exist.

To address this issue, we introduce CONVERSA-
TIONAL EQUATIONS (cEQNS), a dataset featuring
conversational QA pairs linked to mathematical
equations and references from scientific papers, de-
rived from arXiv preprints. This dataset, which
includes raw LATEXequations and their references,
aims to facilitate the development of conversational
models for interpreting scientific equations. We in-
tend to make the dataset publicly available and
establish baseline models for this purpose.

2 Related Work

Prior work in grounded question-answering has fo-
cused primarily on the visual modality (Antol et al.,
2015; Tapaswi et al., 2016; Zhu et al., 2016; Lei
et al., 2019; Singh et al., 2021). More recent work
has focused on answering questions on grounded
knowledge such as tables (Hannan et al., 2020;
Nakamura et al., 2022; Sundar and Heck, 2023).

Simultaneously, the challenge of modeling math-
ematical equations has become an area of active
research in Natural Language Processing. Chiang
and Chen (2019) present an approach for modeling
equations from math word problems. Wang et al.
(2021a) present an approach for the dual problem
of generating math word problems consistent with
equations. Work on learning representations from
equations includes MathBERT Peng et al. (2021),
FORTE (Wang et al., 2021b), and Topiceq (Ya-
sunaga and Lafferty, 2019). More recent work on
generative architectures includes MathGPT (Scar-
latos and Lan, 2023), an auto-regressive model
based on GPT-2 (Radford et al., 2019) for various
language+equation tasks. In contrast, CONVER-



Figure 1: An example of the dataset construction process used in CONVERSATIONAL EQUATIONS

SATIONAL EQUATIONS is a dataset that addresses
both grounded conversational question-answering
and the modeling of mathematical equations.

3 Dataset Creation

3.1 Equation Extraction

We obtain grounded mathematical equations by
parsing publicly available research papers pub-
lished on arXiv 1, an open access repository of
preprints of academic papers. Using AXCELL (Kar-
das et al., 2020), we obtain 15,000 LATEXsource files
from approximately 6,000 academic papers.

We parse the LATEXfiles for all equation instances
by searching for text inside the equation environ-
ment, that is, text within \begin{equation} and
\end{equation} tags. To obtain relevant con-
text regarding an equation in a self-supervised ap-
proach, we store the paragraph of text immediately
before and after the equation. To obtain further
context, we store all lines of text referring to the
specific equation. In LATEX, equations are often
marked with a label (\label{}) for easy reference
using the \ref{} command. Therefore, for each
equation, we search for the label and if it exists,
store all references that utilize this specific label.
Using this approach, we obtain 42,500 equations
in total across all documents.

1https://arxiv.org/

3.2 Dialogue Generation

We prompt GPT-3.5 (Brown et al., 2020) to gener-
ate a sequence of three-turn question and answer
pairs grounded on the equation and references and
describe the process in Figure 1. Our prompt is:

I will give you an equation in latex form and
a list of paragraphs which reference the equation.
Given this information, I want you to generate three
questions regarding the content, as well as the an-
swers. Be brief and concise. Return the questions
in JSON format like so: “dialogue”: {“q1": “ques-
tion 1”, “a1": “answer 1”, “q2": “question 2”,

“a2": “answer 2”, “q3": “question 3”, “a3": “an-
swer 3”}.

4 Next Steps

This paper outlines ongoing work to collect the
CONVERSATIONAL EQUATIONS dataset. Next
steps include completing the collection of the
dataset using the prompt-based approach. While
the existing approach involves generating the en-
tire conversation at once, we will also experi-
ment with chain-of-thought prompting to generate
inter-dependent conversational turns. For exam-
ple, chain-of-thought could be used to detail parts
of an equation sequentially building up to a final
conversational turn that requires utilizing dialogue
context to be answered. Along with the dataset, we
will also release a baseline language model.

https://arxiv.org/
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