
Thresh : A Unified, Customizable and Deployable Platform
for Fine-Grained Text Evaluation

David Heineman, Yao Dou, Wei Xu
School of Interactive Computing, Georgia Institute of Technology

{david.heineman, douy}@gatech.edu; wei.xu@cc.gatech.edu

Abstract

Fine-grained, span-level human evaluation has
emerged as a reliable and robust method for
evaluating text generation tasks such as sum-
marization, simplification, machine translation
and news generation, and the derived annota-
tions have been useful for training automatic
metrics and improving language models. How-
ever, existing annotation tools lack adaptabil-
ity to be extended to different domains or lan-
guages, or modify annotation settings accord-
ing to user needs. In this paper, we introduce
Thresh , a unified, customizable and deploy-
able platform for fine-grained evaluation. With
a single YAML configuration file, users can
build and test an annotation interface for any
framework within minutes – all in one web
browser window. Thresh is publicly accessible
at https://thresh.tools. This work has
appeared previously at the EMNLP 2023
System Demonstrations.

1 Introduction

We present Thresh : a unified and customizable
platform for building, distributing and orchestrat-
ing fine-grained human evaluation for text gener-
ation in an efficient and easy-to-use manner. Our
platform allows users to create, test and deploy an
evaluation framework within minutes, all in a sin-
gle browser window and has already been used to
orchestrate large-scale data annotation (Heineman
et al., 2023). Thresh also serves as a community
hub for fine-grained evaluation frameworks and an-
notation data, all presented in a unified format. The
following are the design principles of Thresh:
• Unified: Thresh standardizes fine-grained eval-

uation into two key components: span selection
and span annotation. Users can easily implement
any framework by writing a YAML template file
(see Figure 1), and Thresh will build the cor-
responding annotation interface. All resulting
annotations adhere to a consistent JSON format.

• Customizable: Thresh offers extensive cus-
tomization to meet a wide range of user needs.
This includes different span selection methods
from subword to word-level, diverse annota-
tion options including custom questions and text
boxes to handle arbitrary typologies, as well as
customized interface elements in any language.

• Deployable: Thresh supports a range of deploy-
ment options for annotation projects of various
scales. Small-scale linguistic inspections (e.g.,
manual ablation studies) can be directly hosted
on the platform. For larger projects, users can
host their template in a GitHub repository and
connect to Thresh. Thresh is also compatible
with crowdsourcing platforms such as Prolific1

and Amazon MTurk2.

• Contributive: Thresh also operates as a commu-
nity hub where users can contribute and access
a wide variety of fine-grained evaluation frame-
works and their annotation data. Currently, it
includes 11 frameworks as displayed in Table 1.

• End-to-End: Beyond facilitating the creation
and deployment of evaluation frameworks,
Thresh streamlines every step of the annotation
process. It offers functions for authors to pub-
lish their typologies as research artifacts and a
supplementary Python library, released under the
Apache 2.0 license, to help data collection.3

2 Fine-Grained Text Evaluation

Thresh formulates fine-grained text evaluation as
two components: span selection and span anno-
tation. During development, users define their an-
notation typology and interface features using a
YAML template (see Sec 3 and Fig 1 for more de-
tails). Based on the configuration, Thresh then

1https://www.prolific.co
2https://www.mturk.com
3https://www.pypi.org/project/thresh

https://thresh.tools
https://www.prolific.co
https://www.mturk.com
https://www.pypi.org/project/thresh


Figure 1: Thresh deployment workflow. Users build and test their template and then deploy with one of 4 options.

constructs an annotation interface that integrates
both components.

2.1 Span Selection
Each annotation instance consists of the source,
target and context. For example, in open-ended
text generation (Zellers et al., 2019), the source
is a starting sentence and the target is a model-
generated continuation. In text simplification (Xu
et al., 2016), the source would be a complex sen-
tence or paragraph, and the target would be the gen-
erated simplification. The context holds additional
relevant information, such as a prompt instruction,
a retrieved Wikipedia page, or a dialogue history.
During the span selection stage, annotators select
relevant spans, referred to as Edits, in the source
and target, following the edit category definitions
outlined in the typology.

2.2 Span Annotation
In the YAML file, users define the typology in a
decision tree structure to further categorize the se-
lected spans into fine-grained types. Unlike previ-
ous work which presents all fine-grained edit types
to annotators simultaneously, Thresh recursively
compiles the annotation interface. Annotators thus
will answer a series of questions or follow-up ques-
tions under each edit type. This tree structure en-
ables support for complex error typologies. Thresh
supports binary, three and five-scale questions with
customized label names, as well as text boxes for
tasks that require human post-editing or explana-
tions. With these features, our interface supports
complex annotation schemes in a flexible and easily
extensible way.

3 Interactive Interface Builder

To alleviate the time consuming process of cus-
tomizing and hosting front-end code — even build-
ing custom databases in some cases — Thresh im-
plements an in-browser interface builder, which al-
lows users to create, test and deploy a fine-grained
interface within a single web browser page, as de-
picted in Figure 1. Users write a YAML template
to construct their interface and provide data with a
JSON file. The Compile button allows users to pre-
view their interface, and the Deploy button presents
instructions for different deployment options.

Template Hub. As Thresh aims to facilitate
easy use and distribution of fine-grained evalua-
tion frameworks, it provides a template hub that
makes it simple for any NLP practitioner to access
a framework with their own data. Alongside the 10
tutorial templates that explain each interface fea-
ture, the annotation builder currently includes 11
widely used inspection and evaluation typologies
across major text generation tasks. Table 1 (on
Page 2) lists each framework, its associated task
and link to our implementation.

Unified Data Model. To ensure compatibility,
we create conversion scripts that adapt these an-
notations to our unified format. Our scripts are
designed to be bidirectional, meaning data pub-
lished for these typologies can be converted to our
format and back without data loss. Our unified
fine-grained data format allows smooth transfer
of analysis, agreement calculation and modeling
code between different projects. We believe this
will support research in learning with multi-task
fine-grained training setups or model feedback.



Ethical Considerations

We do not anticipate any ethical issues pertaining to
the topics of fine-grained evaluation supported by
our interface. Nevertheless, as Thresh lowers the
barrier to fine-grained evaluation, vast ethical re-
sponsibility falls upon practitioners using our plat-
form to prevent the exploitation of crowdsource
workers, through fair pay (Fort et al., 2011) and
safeguards against exposure to harmful or unethical
content (Shmueli et al., 2021). As task difficulty
and complexity scales with the granularity of data
collected, increasing care must be taken for training
annotators adequately and to scale pay accordingly
(Williams et al., 2019).
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Framework Task Released Link

Evaluation
MQM (Freitag et al., 2021) Translation ✓ thresh.tools/mqm
FRANK (Pagnoni et al., 2021) Summarization ✓ thresh.tools/frank
SNaC (Goyal et al., 2022) Narrative Summarization ✓ thresh.tools/snac
Scarecrow (Dou et al., 2022a) Open-ended Generation ✓ thresh.tools/scarecrow
SALSA (Heineman et al., 2023) Simplification ✓ thresh.tools/salsa
ERRANT (Bryant et al., 2017) Grammar Error Correction ✗ thresh.tools/errant
FG-RLHF (Wu et al., 2023) Fine-Grained RLHF ✓ thresh.tools/fg-rlhf

Inspection
MultiPIT (Dou et al., 2022b) Paraphrase Generation ✗ thresh.tools/multipit
CWZCC (Himoro and Pareja-Lora, 2020) Zamboanga Chavacano Spell Checking ✗ thresh.tools/cwzcc
Propaganda (Da San Martino et al., 2019) Propaganda Analysis ✓ thresh.tools/propaganda
arXivEdits (Jiang et al., 2022) Scientific Text Revision ✓ thresh.tools/arxivedits

Table 1: Existing typologies implemented on Thresh with their associated link. Released indicates whether the
annotated data is released.
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