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Abstract
In this paper, we introduce a benchmark specif-
ically for LLMs in the context of dynamic
graphs. This benchmark focuses on evaluat-
ing LLMs’ performance in tasks related to
flow, such as predicting the influence of cer-
tain nodes (forward prediction) and identi-
fying original sources in diffusion processes
(backward prediction). Our objective is to
delineate the competencies and limitations of
LLMs in the realm of dynamic graph analy-
sis. The development of this benchmark is an-
ticipated to enhance the comprehension and
application of LLMs in dynamic graph sce-
narios, an area critical for predicting and un-
derstanding temporally varying complex phe-
nomena. Benchmark datasets is released at
https://zenodo.org/records/10517068.

1 Introduction

The importance of benchmarks in evaluating Large
Language Models (LLMs) like ChatGPT has
grown, especially for assessing their effectiveness
in various domains. Key studies (Liu et al., 2023;
Mao et al., 2023; Hu et al., 2020) highlight bench-
marks as crucial in understanding LLMs’ capabili-
ties and limitations, especially in processing com-
plex data like graphs. Significant research (Wang
et al., 2024) has introduced the NLGraph bench-
mark with eight graph reasoning tasks, revealing
LLMs’ reduced effectiveness in complex graph
tasks. The NLGraph benchmark, also used by
(Guo et al., 2023), points to a performance decline
in LLMs for advanced graph issues, suggesting a
need for improved methods. In dynamic graphs,
benchmarks are scarce. (Zhang et al., 2023a) devel-
oped the LLM4DyG benchmark with nine tasks for
understanding dynamic graphs’ temporal change
on graph structure. However, it lacks focus on flow
dynamics (node dynamics over graphs), underscor-
ing the need for more comprehensive benchmarks
in this area. FlowGPT, our novel framework, fo-
cuses on graph flow research, utilizing LLMs for

dynamic graph interactions. It includes diverse
graph datasets and metrics for graph flow studies.

2 FlowGPT

We generate the datasets of Watts-Strogatz small-
world graph with 1000 nodes and SIR diffusion
model by our open-source library (Zhang et al.,
2023b), which is publicly available at https:
//github.com/XGraphing/XFlow. It should be
noted that there is considerable uncertainty due to
the inherent randomness in the SIR model, which
poses a significant challenge to accurate prediction.
Our benchmark includes two tasks: forward flow
and backward flow. In forward flow, we observe
the data flow starting from the source node set and
predict the target node set forwardly. In backward
flow, we start from the target node set and predict
to identify the source node set backwardly.

We have developed an experimental framework
to evaluate predictive capabilities using a fleet of 14
custom GPTs from ChatGPT. These GPTs are di-
vided into two main categories: Forward Prediction
GPTs and Backward Prediction GPTs. Forward
Prediction GPTs predict the diffusion process from
the source to the target. There are two subgroups
within this category: pure interval GPTs and mixed
interval GPTs. Pure Interval GPTs: These models,
including GPT FW1 (1 step interval, e.g., step 1
→2, 2→3, etc.), FW2 (e.g., 1→3, and 2→4), FW4,
and FW8, identify patterns and trends over con-
sistent time intervals. Mixed Interval GPTs: This
subgroup tests prediction accuracy across varying
time intervals, presenting more complex scenarios.
Models like GPT FW1_2, FW1_4, and FW1_8 are
trained on data combining 1 and 2 intervals, 1 and
4 intervals, and 1 and 8 intervals, respectively, with
testing data structured in the same manner. Back-
ward Prediction GPTs focus on the reverse process,
predicting from the target back to the source. These
GPTs also include two groups, BW1, BW2, BW4,
and BW8 as well as BW1_2, BW1_4, and BW1_8,
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Figure 1: Forward prediction (upper two rows) and Backward prediction (lower two rows).

which mirror the structure and objectives of their
Forward Prediction counterparts.

3 Results

In forward task, as shown in 1st rows in Fig. 1,
there is a lower precision at FW2 and higher pre-
cision at FW1. Recall initially rises from FW1
to FW2, then falls to FW8, with the largest vari-
ability at early intervals. The F1 score, similarly,
decreases notably from FW2 to FW8. The num-
ber of predicted nodes (4th subgraph) varies across
intervals, with more candidates predicted in ear-
lier intervals (FW1, FW2) than later ones (FW4,
FW8). Mixed intervals (2nd row) display different
trends: FW1 mixed with FW2 shows the highest
median precision, recall, and F1 compared to other
combinations, suggesting a balance in performance.
However, high recall outliers in FW1 mixed with
FW4 indicate potential for high performance un-
der certain conditions. The accuracy benefits from
early-late-stage interval combinations, implying
the importance of strategic interval selection and
the complexities of interval mixing. In backward
tasks (lower 2 rows), precision, recall and F1 ini-

tially increase from BW1 to BW2, then decrease
at longer intervals (BW4, BW8). In terms of pre-
dicted versus actual nodes, GPTs with pure inter-
vals predicted fewer nodes than actuals, with higher
accuracy at earlier intervals (BW1, BW2). The hy-
pothesis suggests better performance at BW2 due
to clearer flow patterns. Mixed intervals (4th row)
show that combining early (BW1) and late stages
(BW8) yields better precision and F1 than closer
stages. A trend emerges: accuracy decreases as in-
tervals lengthen, but mixing early and later stages
improves outcomes, highlighting the benefits of
strategically combining different stages for optimal
results.

4 Conclusion

We evaluated LLMs on proposed benchmarks and
found that shorter intervals yield better outcomes
in forward task. Interval mixing has a dual effect,
enhancing or reducing accuracy due to noise vari-
ation. Combining early and late intervals proves
beneficial in backward tasks. This study highlights
the critical roles of interval choice and mixing.



5 Ethics Statement

This study’s findings are impactful across various
domains, including social media, disease modeling,
electrical grids, and biological neural networks,
underscoring the need for effective flow disruption
management. It delves into strategies like network
restructuring and targeted lockdowns. Moreover,
this work aims to enlighten the NLP community
about the inner workings of LLMs, paving the way
for their safer and more informed application.
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k ∈ N+, and aim to determine a k-sized source
node set Ω that maximizes the expected influence
spread |σ(Ω)|. The influence spread is defined
as the size of the final activated subgraph σ(Ω).
Two types of IM techniques exist: simulation-based
and proxy-based. Both require a known diffusion
model D, such as IC, LT, SI, or SIR. Once the seed
budget is met (|Ω| = k), the objective of IM is
to find a seed set Ω that maximizes the expected
influence spread as follows:

Ω = argmax
Ω∗

|σ(Ω∗|G,D)|. (1)

The Forward Flow task is closely related to IM,
but has a wider scope. While IM typically focuses
on maximizing the spread of influence, Forward
Flow is an influence inference and prediction task
that involves understanding and predicting the pat-
terns and extents of influence propagation in a net-
work, regardless of whether the aim is maximiza-
tion. This task involves utilizing network dynamics
to predict how influence flows through the network,
which nodes are the key influencers, and how dif-
ferent nodes contribute to the overall spread.

In contrast, when we have a snapshot of a graph,
denoted as G = (V,E,A), we can observe the
diffusion status at a specific point in time. The
activated subgraph, σ, of this snapshot is the result
of the propagation of an unknown seed set, Ω. The
goal of an SL method is to identify Ω using σ,
the graph structure, G, and the diffusion model,
D. The most probable seed set that resulted in
the observed σ can be found using the following
equation:

Ω = argmax
Ω∗

Pr(Ω∗|σ,G,D) (2)

The Backward Flow task is a backward influence
inferences task, which is similar to the principles of
SL, but with a greater focus on understanding more
complex network dynamics. Instead of just local-
izing the source, the backward influence inference
aims to comprehend the pathways and dynamics of
the reverse spread. This involves analyzing how in-
formation, rumors, or diseases propagate backward
through a network to identify potential sources and
understand the mechanisms of spread.

Our upcoming project aims to unify influence
inference and prediction tasks as well as the back-
ward influence inference and prediction tasks in
a single framework that uses the LLM technique
instead of conventional simulation and proxy meth-
ods. The objective of this undertaking is to obtain

a comprehensive understanding of network dynam-
ics by leveraging the strengths of both approaches
while taking advantage of the in-context learning
capabilities of LLMs. Our goal is to develop a
dynamic model that can predict the most effective
points of influence in a network and also reveal the
origins of diffusion patterns by combining influ-
ence inference in both directions. Furthermore, we
aim to explore the limits of LLMs to comprehend
these complex tasks in dynamic graphs and flow
by combining them. This comprehensive approach
will significantly enhance our understanding of net-
work behaviors, which will enable us to devise
more sophisticated strategies for predicting and an-
alyzing influence spread in a variety of complex
networks.

Implementation

Bridging the gap between the known and the un-
known in dynamic graph benchmarking presents
a unique set of challenges. The primary obstacles
faced in our work include computational device
limitations, the unpredictability of outputs from
LLMs, and managing the context length within
LLMs. These challenges posed significant hur-
dles in developing robust benchmarks for dynamic
graphs. Our approach not only confronts these
challenges head-on but also paves the way for inno-
vative solutions in the field, thereby filling a critical
gap in dynamic graph benchmarking. In order to
overcome the challenges we faced, when setting
up the experiments, we utilized a series of targeted
techniques. Firstly, we made use of online tools
such as customized GPTs from ChatGPT to cir-
cumvent computational limitations. Secondly, we
provided structural knowledge, formatted inputs,
and clear instructions to the GPTs fleet we set up.
This was crucial in managing the unpredictabil-
ity of outputs. Lastly, we addressed issues related
to context length in LLMs by splitting the data
and employing other strategies. These techniques
not only aided the development of dynamic graph
benchmarks but also significantly contributed to
advancing the field.
Diffusion Models. In our approach, we place a sig-
nificant emphasis on the SIR (Susceptible-Infected-
Removed) model, a well-established framework
in diffusion modeling. This model, a cornerstone
in understanding diffusion processes, is particu-
larly notable for its ability to capture the dynam-
ics of infection spread and recovery in a network



(Kermack and McKendrick, 1927a). While our
focus is primarily on the SIR model, it’s impor-
tant to recognize the diversity of diffusion models
available in the field. Other progressive models,
such as the Independent Cascade (IC) (Goldenberg
et al., 2001) and Linear Threshold (LT) (Granovet-
ter, 1978) models, have been widely studied for
their unique mechanisms of vertex activation and
permanence in an active state. In the realm of non-
progressive models, variants of the SIR model offer
nuanced perspectives on diffusion processes. These
include the SEIR model, which introduces an ’Ex-
posed’ state (Kermack and McKendrick, 1927b),
the SIRS model that allows recovered individuals
to become susceptible again (Anderson and May,
1980), the SIRD model, which accounts for ’Dead’
individuals (Hethcote, 2000), and the SEIRS model,
a hybrid that incorporates features of both SEIR
and SIRS models (Heesterbeek et al., 2005). While
most existing diffusion models adhere to a mean-
field approach, treating each entity with identical
diffusion behavior (Guo et al., 2013; Li et al., 2015;
Nguyen et al., 2016; Chen et al., 2016; Li et al.,
2017; Tian et al., 2020), our focus on the SIR model
aligns with its relevance and applicability in depict-
ing real-life diffusion scenarios. By concentrating
on the SIR model, we aim to delve deeper into its
intricacies and potential applications in understand-
ing and analyzing diffusion phenomena.

Graph Datasets. Our project is currently pri-
oritizing the exploration and analysis of Watts-
Strogatz small-world graphs, while still acknowl-
edging the diverse range of datasets and graph
structures that we have previously integrated into
our framework. Our implementation is designed
to be highly adaptable and compatible with vari-
ous graph representations, including several Net-
workX graph objects like Barabási–Albert (BA),
Erdős–Rényi (ER) models, and more, as exten-
sively listed in the Graph Generators section of Net-
workX. It also encompasses graph objects from Py-
Torch Geometric, such as Cora, CiteSeer, PubMed,
and co-purchasing networks like Amazon Photo
and Computers, along with synthetic graph gen-
erators, as seen in PyTorch Geometric. However,
our current focus is on Watts-Strogatz small-world
graphs, as they uniquely model the small-world
phenomenon in network theory. This targeted ap-
proach allows for a more specialized and compre-
hensive examination of these graphs, illuminating
their distinct properties and applications in com-

plex network analysis. We generate the datasets of
Watts-Strogatz small-world graph with 1000 nodes
by our open-source library, which is publicly avail-
able at: https://github.com/XGraphing/XFlow.

In order to ensure the reliability of each bot con-
figuration, we are replicating them more than three
times with different testing data. During each repli-
cation, the fleet will share the same graph data but
with varying training and testing data. We utilized
our XFlow library to generate the graph data and
provided it to the GPTs as background knowledge.
To prepare the training and testing data, we ran
10 simulations on that graph with the diffusion
model of SIR for 20 intervals. For each interval,
the source infected node and the target infected
node are recorded. The GPTs will also be provided
with the training data containing source intervals,
source infected nodes, target intervals, and related
target infected nodes as knowledge. During test-
ing, formatted files will be uploaded to the GPTs
and processed. The model will be instructed to
fill in the missing data and return the updated files.
For the forward task, the files will be formatted
with data of source interval, source infected nodes,
and target intervals, while target infected nodes are
deleted. The Forward prediction GPTs are then
asked to predict the target infected nodes. For the
backward task, the files will be formatted with data
of target interval, target infected nodes, and source
intervals, while source infected nodes are removed.
The Backward prediction GPTs are then asked to
predict the source infected nodes. An important
aspect of testing is the omission of specific param-
eters such as the SIR model’s infected rate and
recovery rate values, challenging the model to in-
fer them from the training data. Future work may
involve explicitly providing these parameters to
observe the impact on prediction accuracy. This
experimental setup aims to rigorously test and val-
idate the predictive capabilities of our framework
under a variety of scenarios, from simple to com-
plex, ensuring a comprehensive evaluation of its
effectiveness in different network dynamics.

Evaluation Metrics

We evaluated the performance of the chatGPT cus-
tom GPTs we had created to deduce the infected
nodes in both the Forward and Backward tasks.
We utilized three crucial evaluation metrics in clas-
sification, namely precision, recall, and F1 score.
The responses of the Forward GPTs are stored as



the list of the Predicted Target Infected Nodes List,
while the responses of the Backward bots are stored
as the list of the Predicted Source Infected Nodes
List. Both of those predicted results from the GPTs
will be considered as the list of predicted positives.
In the Forward experiments, the results from the
SIR simulation based on the Small World graph
are stored as the Actual Target Infected Nodes List.
Meanwhile, in the Backward experiments, the re-
sults from the SIR simulation based on the Small
World graph are stored as the Actual Source Nodes
List. We have calculated the overlap between the
Actual List and the Predicted List for both the For-
ward and the Backward tasks.
Precision, is defined as the ratio of correctly pre-
dicted positive observations to the total predicted
positive ones, including the true positive as well as
the false positives, which can be expressed as:

Precision = TP/(TP + FP ) (3)

In our experiments, based on this definition, it
will be the number of overlapping nodes divided by
the total number of predicted nodes in the predicted
list. Precision reflects the GPT’s ability to return
only relevant instances. A higher precision indi-
cates that the GPT returned significantly more rele-
vant results than irrelevant ones, while a lower pre-
cision indicates many false positives. That means
the GPT predicted many instances as positive that
are actually negative.
Recall, also known as sensitivity or true positive
rate, is the ratio of correctly predicted positive ob-
servations to all observations in the actual class, in-
cluding the true positives and false negatives. The
formula for Recall is:

Recall = TP/(TP + FN) (4)

In our case, it will be the number of overlapping
nodes over the number of actual nodes. Recall
measures the ability of the model to identify all
relevant cases within a given dataset. A higher
recall indicates that the GPTs returned most of the
relevant results, while a lower recall indicates that
they missed a significant number of relevant results.
F1 Score, is the harmonic mean of precision and
recall. The formula is:

F1 = 2∗(Precision∗Recall)/(Precision+Recall)
(5)

F1 score reaches its best at 1, which represents
perfect precision and recall, and its worst at 0. A
higher F1 score suggests a model with a good bal-
ance of precision and recall, minimizing both false
positives and false negatives. Conversely, a lower
F1 score implies that the model has issues with
either precision or recall, leading to a higher rate
of false positives or false negatives.

Additional Results

In the comparison between pure intervals and
mixed intervals shown in Figure 2, we can see that
for pure intervals 1 or 2 and mixed intervals 1 and
2, Precision FW1 is larger than FW2. However,
when the data of intervals 1 and 2 are combined,
the precision becomes even smaller. FW2 has the
highest recall score. Moreover, after combining
the data of intervals 1 and 2, the recall of F1_2 be-
comes the lowest. The mixed case results in a lower
F1 score compared to pure intervals. Although the
F1_2 GPT provides more candidate nodes in the
response, the accuracy drops. For pure intervals
1 or 4 and mixed intervals 1 and 4, Precision, Re-
call, and F1 Score decrease from FW1 to FW4.
Combining FW1 and FW4 results in even smaller
metrics, a lower mean, and a bigger IQR. The fig-
ure also displays that the GPT FW1_4 predicted
more nodes than the actual. For pure intervals 1 or
8 and mixed intervals 1 and 8, after merging the
intervals, the performance of FW1 blended with
FW8 improved. However, it is still inferior to pure
FW1, which exhibited significantly larger metrics
than pure FW8. The mixed GPT FW1-8 provides
more predicted candidates than the pure FW8 one.
To conclude, combining early stage intervals FW1
with closer intervals like FW2 and FW4 reduces
the performance, while combining them with later
stages increases the performance. The reason might
be that combining the closer intervals might bring
some noise, even though it provides more informa-
tion. Combining with the later stage, on the other
hand, might overcome the noise because the per-
formance of FW8 was low before the time span
was long enough. Providing information from the
beginning intervals might bring some noise, but
the more information it provides, the more it will
overcome that noise.

Figure 3 shows the comparison between pure
intervals and mixed intervals in the Backward task.
The data shows that BW1 has a wide range of Pre-
cision values, with the median falling in the middle



Figure 2: When we combine data from intervals that are closer together, such as FW1 with FW2, the accuracy of
our predictions can decrease. However, when we mix data from early and later intervals, such as combining FW1
with FW8, it can actually improve prediction accuracy despite the initial introduction of noise. Based on this data, it
seems that finding the right balance between informative data and potential noise can enhance the predictive abilities
of GPT models.

of the box and the possibility of outliers on the
higher end. On the other hand, BW2 has a larger
Precision than BW1, but with a huge IQR, indicat-
ing more variability. When both BW1 and BW2
are mixed, the precision and the F1 score are lower
than either of the pure BW1 or BW2. However, the
Recall slightly increases. When combining BW1
and BW4, the data indicates that BW4 has a higher
precision than BW1, but with a large interquartile
range (IQR), indicating greater variability. Addi-
tionally, BW4 has a low recall. The mixture of
BW1 and BW4 outperformed BW1 in terms of pre-
cision, recall, and F1 Score. When adding BW1 to
BW8, BW8 has the lowest performance in terms
of Precision, Recall, and F1 Score. However, when
mixed with BW1, it outperforms both BW1 and
BW8. In summary, when BW2 is mixed with BW1,
it results in a lower score, given pure BW2 already
outperforms BW1. On the other hand, when BW4
is mixed with BW1, it leads to an increase in the
score to some extent. A closer mix in intervals
might not bring some benefit but noise, but a fur-
ther mix might be beneficial.



Figure 3: Combining early and later intervals (BW1 with BW4 and BW8) can improve precision and F1 scores in
the Backward task. Although there may be a temporary drop in performance when BW1 is merged with the adjacent
interval BW2, the overall trend suggests that integrating early-stage data with extended intervals leads to a more
accurate predictive outcome. It is important to avoid combining intervals that are too close together as this may
introduce noise to the results.


