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Abstract

Despite vision-language models’ (VLMs) re-
markable capabilities as versatile visual assis-
tants, two substantial challenges persist within
the existing VLM frameworks: (1) lacking
task diversity in pretraining and visual in-
struction tuning, and (2) annotation error and
bias in GPT-4 synthesized instruction tuning
data. Both challenges lead to issues such as
poor generalizability, hallucination, and catas-
trophic forgetting. To address these chal-
lenges, we propose VISION-FLAN, the most
diverse public-available visual instruction tun-
ing dataset to date, comprising 196 diverse
tasks and 1,664,261 instances sourced from
academic datasets, and each task is accompa-
nied by an expert-written instruction. Comple-
menting the proposed dataset, we further intro-
duce a two-stage instruction tuning framework,
in which VLMs are firstly tuned on VISION-
FLAN and secondly, further tuned on GPT-4
synthesized data. Our experimental results
demonstrate that by leveraging the two-stage
tuning framework, VLMs trained on VISION-
FLAN, achieve the state-of-the-art performance
across a wide range of multi-modal evaluation
benchmarks.

1 Introduction

Recent vision-language models (VLMs) (Liu et al.,
2023d; Li et al., 2023b; Dai et al., 2023), built upon
pre-trained large-language models (LLMs) (Chiang
et al., 2023; Gao et al., 2023) and pretrained image
encoders (Sun et al., 2023), have shown impressive
capabilities as general visual assistants. However,
despite their notable successes, we identify two re-
maining challenges that merit further investigation.

Firstly, the data used in the pre-training stage
is dominated by the image captioning task, which
lacks diversity, resulting in limited generalizability
of VLMs (Chen et al., 2023; Zhang et al., 2023).
Secondly, most of existing visual instruction tun-
ing datasets (Liu et al., 2023d; Li et al., 2023a; Yin

et al., 2023) are synthetically generated by GPT-4
by repurposing text annotations from the original
computer-vision datasets. The lack of task diver-
sity, spurious co-occurring patterns between ob-
jects, and long-form outputs in these datasets may
cause severe hallucination (Liu et al., 2023b; Li
et al., 2023c; Liu et al., 2023a; Zhou et al., 2023),
and catastrophic forgetting (Zhai et al., 2023).

To address both challenges, we introduce
VISION-FLAN, the most diverse public-available
visual instruction tuning dataset consisting of 196
tasks drawn from academic datasets. Each task
in VISION-FLAN is accompanied by an expert-
written instruction. We show some sample tasks
from VISION-FLAN in Figure 2 and all the datasets
used in Appendix B. In addition, we introduce a
novel two-stage instruction tuning framework. In
the first stage, we utilize the pre-trained LLaVA
model (Liu et al., 2023d) as our initial model, and
finetune it on VISION-FLAN to gain diverse ca-
pabilities, resulting in the VISION-FLAN BASE

model. However, due to the concise nature of target
outputs in academic datasets, the responses gener-
ated by VISION-FLAN BASE tend to be brief and
not aligned with human preferences. Therefore,
in the second stage, we further finetune VISION-
FLAN BASE using a minimal amount of GPT-4
synthesized data (i.e., 1,000). This step aims to
adjust the model’s outputs to be more in line with
human preference, resulting in the VISION-FLAN

CHAT model.
Our experimental results demonstrate that high-

quality human annotations within VISION-FLAN

significantly enhances the capabilities of both
VISION-FLAN BASE and VISION-FLAN CHAT

while reducing the risk of hallucination and catas-
trophic forgetting. The two-stage instruction tun-
ing framework enables VISION-FLAN CHAT to
achieve better human-preference alignment with
much less GPT-4 synthesized data comparing to
state-of-the-art VLMs.



Model LLM Image Encoder MM-Bench MME LLaVA-Bench MM-Vet Pope CF

BLIP-2 FlanT5-XXL ViT-g/14 - 1293.8 - 22.4 85.3 -
InstructBlip Vicuna-13B ViT-g/14 36.0 1212.8 58.2 25.6 78.9 -
Mini-GPT4 Vicuna-13B ViT-g/14 24.3 581.67 - - - -
Shikra Vicuna-13B ViT-L/14 58.8 - - - - -
LLaVA Vicuna-13B v1.5 CLIP-ViT-L-336px 38.7 1151.6 70.8 33.4 75.3 -
Qwen-VL Qwen-7B ViT-bigG 38.2 - - - - -
Qwen-VL-Chat Qwen-7B ViT-bigG 60.6 1487.5 73.6 - - 72.1
LLaVA 1.5 Vicuna-13B v1.5 CLIP-ViT-L-336px 66.7 1531.3 70.7 35.4 83.6 73.3

VISION-FLAN BASE Vicuna-13B v1.5 CLIP-ViT-L-336px 69.8 1537.8 38.5 33.4 85.9 87.2

Second-Stage Alignment with 1,000 LLaVA
VISION-FLAN CHAT Vicuna-13B v1.5 CLIP-ViT-L-336px 67.6 1490.6 78.3 38.0 86.1 84.0

Table 1: Comprehensive evaluation of VLMs on widely adopted benchmark datasets.

2 Two-stage Visual Instruction Tuning

LLM

MLPs

ViT

Stage 1: Visual
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up at the __

a small dog is looking up at the cat
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Figure 1: On the left of the figure, we show the architec-
ture of the LLaVA model and on the right of the figure,
we show the pipeline of the two-stage visual instruction
tuning.

Contrary to prior approaches (Liu et al., 2023c;
Dai et al., 2023) that mix human-labeled data with
GPT-4 synthesized data for visual instruction tun-
ing, our study introduces a two-stage instruction
tuning pipeline. In the first stage, we finetune the
VLM on VISION-FLAN to acquire diverse capa-
bilities and name the resulting model as VISION-
FLAN BASE. However, due to the brevity of target
outputs presenting in the academic datasets, the
responses from VISION-FLAN BASE are not in
human-preferred formats. Hence, we further fine-
tune the VLM on GPT-4 synthesized data to align
the model’s outputs with human preference. We
denote the yielded model as VISION-FLAN CHAT.

3 Experiment

Experiment Setup We evaluate the models on
multiple-choice benchmarks: MMbench (Liu et al.,
2023e), and MME (Fu et al., 2023); free-form gen-
eration benchmarks: MM-Vet (Yu et al., 2023)
and LLaVA-Bench; the hallucination benchmark:
POPE (Li et al., 2023c), and catastrophic for-
getting benchmarks: CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009), MNIST (LeCun,

1998), and miniImagenet (Vinyals et al., 2016).

Main Results As demonstrated in Table 1,
VISION-FLAN BASE achieves state-of-the-art per-
formance on comprehensive evaluation bench-
marks, while reducing hallucination and catas-
trophic forgetting. However, we observe VISION-
FLAN BASE scores significantly lower on the
LLaVA-Bench dataset comparing to VLMs trained
on GPT-4 synthesized data. We attribute this prob-
lem to the conciseness and brevity of target outputs
in academic datasets. On the other hand, with the
second-stage tuning on a merely 1,000 GPT-4 syn-
thesized instances, VISION-FLAN CHAT achieves
significantly improved performance on benchmarks
measuring human-preference alignment including
LLaVA-Bench and MM-Vet, while maintaining
a relatively lower rate of hallucination and catas-
trophic forgetting.

In Table 3 and 4, we show the effects of us-
ing different amount of GPT-4 synthesised data on
human-preference alignment and hallucination. As
one can observe, A minimal quantity (1,000) of
GPT-4 synthesized data is sufficient for aligning
VLM responses with human preference. Notably,
an increase in the number of GPT-4 synthesized
data does not correspond to a proportional enhance-
ment in alignment and introduces hallucination and
bias into the VLMs.

4 Conclusion
In this paper, we propose VISION-FLAN, the
most diverse public-available visual instruction
tuning dataset, consisting of 196 diverse tasks
and 1,664,261 instances collected from academic
datasets, and and each task is accompanied by
an expert-written instruction. We demonstrate
that VLMs trained on VISION-FLAN with the pro-
posed two-stage visual instruction tuning frame-
work achieve state-of-the-art performance on com-
prehensive evaluation bemchmark datasets.
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Aircraft Manufacturer Classification
Relational and Analogical

Visual Reasoning

Instruction: Each image has 8 images
labeled as Image 1 to Image 8. These 8
images follow a specific pattern. Detect
the pattern and select the next image in
the sequence from the 8 available
options.
Target: Option 6

Medical Question Answering

Instruction: I will give you a radiology image
(scan of a body part). Analyze it and answer
the question given in the input text.
Input: Does the patient have a central line
placed?
Target: Yes

Instruction: Determine the manufacturer of
the provided aircraft image. The
manufacturer refers to the company that
designs, builds, and assembles the aircraft,
possessing the expertise and experience in
the aviation industry necessary for
production and delivery.
Target: British Aerospace

Artist, Genre and Style
Classification

Instruction: For the given painting, give me
the artist name. Also provide the genre and
style, if possible.
Target: This artwork was created by Pyotr
Konchalovsky. It falls under the genre of still
life and showcases Post Impressionism style
of painting.

Document-Level OCR

Instruction: Detect all the text in the
image.
Target: The texts are: CHESAPEAKE
BAY'S FINEST; FREH FISH DAILY;
CAPTAIN; WHITE; FA; MP & LOBSTER
JUMBO CRABS CO; CRA.

Organism Classification

Instruction: Taxonomic category is a rank
or group of organisms developed on the
basis of their characteristics. Identify the
class of the organism in the image.
Target: The class of the organism in the
image is Magnoliopsida.

Instruction: You are provided with a picture,
write a caption with a specific sentiment
(positive or negative) related to the picture. 
Write a caption with a positive sentiment for
the given image.
Target: a very nice looking tray filled with
some excellent looking food.

Sentiment-Conditioned Captioning

Instruction: Answer the question and
provide an explanation.
Input: The question is: What kind of
precipitation is at the top of the
mountain?
Target: The answer is snow because the
mountain tops are white.

Answer and Rational Generation

Figure 2: Sample tasks in VISION-FLAN. Instruction denotes a task instruction crafted by annotators. Input means
text input in the given task, and Target is the target response based on the instruction.

Total-Text (Ch’ng et al., 2020), VisDA-2017 (Peng
et al., 2017a), Yoga-82 (Verma et al., 2020), Cal-
tech101 (Fei-Fei et al., 2004), Cars (Krause et al.,
2013), Core50 (Lomonaco and Maltoni, 2017),
NUS-WIDE (Chua et al., July 8-10, 2009), Ob-
jectNet (Barbu et al., 2019), Places205 (Zhou
et al., 2014), 300w (Sagonas et al., 2016), Yahoo
(Farhadi et al., 2009), LFW (Huang et al., 2007),
model-vs-human (Geirhos et al., 2019), Office-
Home (Venkateswara et al., 2017), Winoground
(Thrush et al., 2022), ConceptualCaptions (Sharma
et al., 2018), KVQA+image question answer (San-
ket Shah and Talukdar, 2019), MemeCap (Hwang
and Shwartz, 2023), PlotQA (Methani et al., 2020),
SentiCap (Mathews et al., 2016), VisDA-2017
(Peng et al., 2017b), VQG (Mostafazadeh et al.,
2016), WIT (Srinivasan et al., 2021), WikiArt
(Tan et al., 2019), VQA-RAD (Lau et al., 2019),
VOC2007 (Everingham et al.), VIZWIZ (Gurari
et al., 2020), ViQuAE (Lerner et al., 2022), ST-
VQA (Biten et al., 2019), Sketch (Eitz et al.,
2012), RAVEN (Zhang et al., 2019), PICKAPIC
(Kirstain et al., 2023), PACS (Li et al., 2017), NO-
CAPS (Agrawal et al., 2019), Localized Narra-
tives (Pont-Tuset et al., 2020), INATURALIST
(Horn et al., 2018), HICO (Chao et al., 2015), GE-
OMETRY3K (Lu et al., 2021a), FUNSD (Guil-
laume Jaume, 2019), FLICKR30K (Plummer et al.,

2017), DVQA (Kafle et al., 2018), DTD (Cimpoi
et al., 2014), DOMAIN NET (Peng et al., 2019),
DOCVQA (Mathew et al., 2020), DAQUAR (Ma-
linowski and Fritz, 2014), CONCADIA (Kreiss
et al., 2022), CLEVR (Johnson et al., 2017b), and
CHART2TEXT (Obeid and Hoque, 2020).

C Effect of GPT-4 Synthesized Data

Figure 3: Effect of increasing number of GPT-4 syn-
thesized training instances on the human-preference
benchmark. The dashed gray line indicates the perfor-
mance of the-state-of-the-art LLaVA 1.5 model.



Figure 4: Effect of increasing number of GPT-4 synthe-
sized training instances on the hallucination benchmark
and the ratio of “Yes”. The dashed lines indicate the
performance of the state-of-the-art LLaVA 1.5 model.
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