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Abstract
Recent works have demonstrated the effective-
ness of self-alignment in which a large lan-
guage model is aligned to follow general in-
structions using instructional data generated
from the model itself starting from a hand-
ful of human-written seeds. Instead of gen-
eral alignment, in this work, we focus on
self-alignment for expert domain specializa-
tion (e.g., biomedicine, finance). As a pre-
liminary, we quantitively show the marginal
effect that generic instruction-following train-
ing has on downstream expert domains’ per-
formance. To remedy this, we propose self-
specialization - allowing for effective model
specialization while achieving cross-task gener-
alization by leveraging only a few labeled seeds.
Self-specialization offers a data- and parameter-
efficient way of “carving out” an expert model
out of a generalist pre-trained LLM.

1 Introduction

Instruction-tuning (Ouyang et al., 2022; Wei et al.,
2022; Mishra et al., 2022; Su et al., 2022) of large
language models (LLMs) has shown promise in
promoting cross-task generalizability through spe-
cific directives. Yet, its success is constrained by
the intensive demand for quality, human-annotated
data, presenting scalability challenges (Chung et al.,
2022; Wan et al., 2023; Köpf et al., 2023). Emerg-
ing as a promising solution to this challenge is self-
alignment (Wang et al., 2022; Sun et al., 2023), al-
lowing LLMs to self-generate instructional data us-
ing minimal seeds. This method presents a means
to harness the internal general knowledge of mod-
els, reducing reliance on human annotations.

However, a pertinent question remains: How ef-
fective are the self-aligned models when applied to
more niche domains, such as biomedicine? Given
that both the initial pre-training and subsequent
self-alignment are general, the knowledge embed-
ded in LLM parameters may be a mixture of se-
mantics and various domains. This raises questions

Self-Specialization

Sports

Finance

Law

Biomedicine

🔥

🔥

Base LLM   ✚ 🔥

Biomedicine Expert

🔥

🔥

Carving out
latent expertise

Plug-and-play

Specialized LoRA

Figure 1: Self-specialization concept. Expertise in vari-
ous domains is mixed and latent within base LLMs, and
can be carved out through self-specialization.

about their effectiveness in specialized domains, de-
spite the aims of instruction-tuning for cross-task
generalization. In our preliminary study, we find
that existing models such as Alpaca (Taori et al.,
2023) and Dromedary (Sun et al., 2023), although
aligned, exhibit only a modest degree of improve-
ment within the specialized domains.

In this work, we explore the possibility of self-
specialization (Fig. 1). Drawing inspiration from
the foundational principles of self-alignment, self-
specialization goes a step further by incorporating
domain-specific seed instructions and is further bol-
stered by parameter-efficient fine-tuning. Our goal
is to guide models beyond generic alignment, di-
recting them to generate data that are not just con-
textually fitting for a specialized domain but also
maintain high accuracy.

We evaluate our self-specialized models within
the biomedical and finance domains. Surprisingly,
despite the simplicity of our approach, our results
present a compelling case for self-specialization
significantly outperforming the base models, and
even larger models that are generally instruction-
tuned. Notably, our self-specialized one based on
MPT-30B (Team, 2023) for biomedicine even sur-
passes larger models (based on LLaMA-65B (Tou-
vron et al., 2023a)), including the ones improved
through self-alignment by leading methods (Taori
et al., 2023; Sun et al., 2023).
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Figure 2: Comparing (with F1-SCORE, 5-shot) our self-specialized MPT-30B model to 65B models in biomedicine.

2 Self-Specialization

We introduce a method of self-specialization (Fig-
ure 3), starting with domain-specific seed demon-
strations to guide the base model toward generating
synthetic instructions and responses relevant to the
domain. This process includes a retrieval mech-
anism for enhancing domain knowledge and con-
cludes with specialization tuning, utilizing QLoRA
(Dettmers et al., 2023) to refine the model’s exper-
tise in targeted domains.

Seed Demonstrations. Our approach begins
with a small, curated set of seed demonstrations
specific to the domain, aiming to use as few as
80 for biomedicine. These seeds, built from es-
tablished datasets (Parmar et al., 2022), provide
a foundation for generating domain-specific in-
structions, exploiting the latent domain knowledge
within large pre-trained models.

Domain-Specific Instruction Generation.
Leveraging the seed demonstrations, we prompt
a base model, such as MPT-30B, to expand on
these seeds and generate a broader range of
domain-specific instructions. This step enriches
the model’s capacity to produce varied and
comprehensive domain-related content.

Domain-Specific Response Generation. Fol-
lowing instruction generation, we produce accu-
rate and domain-aligned responses. To augment
the model’s capability, we optionally integrate ex-
ternal knowledge through a retrieval component,
enhancing the depth and relevance of the generated
responses.

Triggering Specialization. Upon establishing
a set of domain-specific instructions/responses,
the base model undergoes tuning using the self-

generated data, adjusting its internal parameters
using QLoRA to cater specifically to the domain’s
nuances. This step is crucial, marking the model’s
transformation from being general to being domain-
specialized while preserving cross-task general-
izability, thus resulting in the final self-aligned
domain-specialized model.

3 Experimental Results

In Figure 2, we compare our self-specialized MPT-
30B model with 65B models, including LLaMA-
65B, and its general instructions aligned variants in
the biomedical domain that encompasses 10 NLP
datasets (Details are in Appendix B). We also com-
pare ours to the supervised instruction-tuned model,
MPT-30B-instruct. Interestingly, the results reveal
that our model, without extensive data, exhibits re-
markable progress in the majority of tasks, surpass-
ing all baselines, including 65B models, despite its
≈2.2x smaller size. This not only highlights the
lower expert domain performance trade-offs of the
“generalist” models in terms of encoding vast gen-
eral knowledge into a finite set of parameters, but
also underscores the effectiveness of our parameter-
efficient approach to model specialization.

4 Conclusion

Our investigation into self-specialization has suc-
cessfully leveraged the latent domain expertise
within LLMs using minimal human supervision.
The method has shown exceptional results in spe-
cialized fields, with our specialized model not only
outperforming its base model, MPT-30B, but also
larger generally aligned models (65B). This illu-
minates the intrinsic challenges of encoding vast
general knowledge into limited parameters and un-
derscores the efficiency of self-specialization.



Limitations

While our study provides encouraging insights into
the capabilities of self-specialization, this is an
initial step in opening up new opportunities. We
recognize that there is much to learn and explore
in this exciting direction. The promising results,
achieved even with the proposed simple scheme,
suggest that further refinement of this approach
and exploration across diverse specialized domains
could be pivotal, contributing to the ongoing ef-
forts to uncover the embedded expertise of LLMs.
We note that future work can explore better use of
retrieval-augmentation, and the combination of dis-
tinct self-specialized models for a self-specialized
mixture-of-experts. Moreover, while promising, it
should be noted that our approach may inadver-
tently propagate biases from pre-trained data and
the resulting specialized model may not be fully
reliable yet for real-world applications.
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A Experimental Settings

Datasets. For our primary evaluation, we employ
various biomedical NLP datasets, most of which
are curated in BIGBIO (Fries et al., 2022). A total
of 10 different datasets are adopted to encompass
a wide range of NLP tasks: Question Answering
(QA), Named Entity Recognition (NER), Relation
Extraction (RE), Sentiment Analysis (SA), and
Document Classification (DC). For the BioASQ
dataset (Nentidis et al., 2020) that could be divided
into three subsets according to question types, we
aggregate them in the main results exclusively for
conciseness. Following a prior work (Parmar et al.,
2022), all datasets are transformed into instruc-
tional data. Additionally, we validate our method
in the financial domain to showcase its generaliz-
ability. We adopt a total of 10 diverse datasets, cov-
ering numerous NLP tasks: Summarization (SUM),
QA, NER, RE, SA, and Classification (CLS). De-
tails on each dataset are in Appendix B.

Models. We use base MPT (Team, 2023), a pow-
erful open-source model. Inspired by the success
of a previous work (Sun et al., 2023) that showed
that large model size has a significant effect, we
adopt the 30B variant for our main experiments.
For the retriever, we use simple yet effective BM25
(Robertson et al., 1994), to support a practical
scenario where sufficient human-labeled data for
training a more sophisticated retriever is not avail-
able. In addition to MPT-30B, we adopt LLaMA-2
7B (Touvron et al., 2023b) and Falcon-40B (Al-
mazrouei et al., 2023), other strong open-source
models, to further validate the general applicabil-
ity of self-specialization with different scales and
base models. For benchmarking of general-purpose
aligned models, we evaluate Alpaca-65B (Taori
et al., 2023) and Dromedary-65B (Sun et al., 2023)
that are both based on LLaMA (Touvron et al.,
2023a). We additionally evaluate existing domain-
specific models (Wu et al., 2023): MedLLaMA and
PMC-LLaMA (Details are in Section D).

Metrics. In our study, all tasks are approached
as a unified text generation problem, aiming to as-
sess the capabilities of generative models. In align-
ment with an established convention (Parmar et al.,
2022), we adopt F1-SCORE as our main evaluation
metric, given an early observation that ROUGE-
L (Lin, 2004), as shown in Table 4 in Appendix,
exhibits strong correlation with F1-SCORE.

Implementation Details. For biomedical seeds,
we use data sampled from BoX (Parmar et al.,
2022), encompassing 32 tasks, up to 5 instances
for each dataset, resulting in a compact yet rep-
resentative 80 seed samples in total. These seeds
are also used as demonstrations in a prompt for
inference. For optional external corpus, we lever-
age PubMed1 preprocessed in (Phan et al., 2021),
which contains ≈30M abstracts. For the financial
domain, we use a total of 90 seeds sampled from
the 10 train sets in our corresponding benchmark
datasets. We generate 5K synthetic instructional
data through the self-specialization process. Being
equipped with QLoRA (Dettmers et al., 2023) and
4-bit quantization, the model is trained using a sim-
ple Alpaca-style template (Taori et al., 2023) on a
single A100, taking only a few hours for 3 epochs,
resulting in a light-weight specialization module.
that can be attached to the base model inducing its
specialization upon request.

B Explanations of Evaluation Datasets

Below are brief descriptions for each dataset in
biomedical and financial domains. All datasets are
in English.

B.1 Biomedicine

BioASQ-8b (Nentidis et al., 2020). This is a
biomedical QA dataset that necessitates models to
produce answers from given questions and corre-
sponding contexts within the biomedical domain.
There are three distinct subsets that can be divided
according to question types: Factoid, List, and
Yesno. This dataset is publicly available upon a
data use agreement. The data are originally in-
tended to be used as training and development data,
and we use the small part of the training set as
seeds (i.e., 5 seeds), and the test set for evaluation
(500 for each question type). CC BY 2.5.

PubMedQA-Long (Jin et al., 2019). Pub-
MedQA is another biomedical QA dataset featuring
research questions along with their corresponding
abstracts and answers sourced from PubMed2. To
diversify the task types, we focus on a long-form
answer (i.e., conclusion). We use 5 labeled data for
seeds and 500 for evaluation. MIT license.

AnatEM (Pyysalo and Ananiadou, 2013). This
is a Named Entity Recognition (NER) task for

1gs://scifive/pretrain/pubmed_cleaned
2https://www.ncbi.nlm.nih.gov/pubmed
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Figure 3: Self-Specialization overview. (a) We start with a small set of human-authored domain-specific seed
instructions. The base model crafts synthetic instructions and corresponding input contexts tailored to that particular
domain. Subsequently, during the response generation phase, responses are curated given the generated instruction
and input pairs, optionally enhanced by infusing domain-relevant knowledge obtained via a retrieval component or
iterative re-generation via our previous self-specialized model. Finally, in the specialization phase, the base model is
tuned for specialization (w/ QLoRA) to uncover its target domain expertise. (b) Conceptually speaking, this process
can be described as uncovering latent expertise within LLMs.

anatomical entities in biomedical texts. Models
are tasked with identifying all anatomy-named en-
tities and their corresponding types from given a
small paragraph. Non-commercial purposes only.
404 test data are used for evaluation and 5 training
instances are used for seeds. CC BY-SA 3.0.

BioNLP13CG (Pyysalo et al., 2013). The Can-
cer Genetics (CG) is an information extraction task
targeting the recognition of events in text, encom-
passing multiple levels of biological organization,
from molecular to whole organisms. 5 training data
are used for seeds, and the number of evaluation
data is 200. CC BY-SA 3.0.

NCBI (Dogan et al., 2014). The NCBI dis-
ease corpus, derived from the National Center for
Biotechnology Information, focuses on disease
name recognition. According to the annotation
guideline of this dataset, organism names such as
humans, and also gender are excluded for annota-
tion. We use 5 training instances for seeds, and 100
for evaluation. The data is freely available to the
public for use. CC0 1.0 license.

DDI (Herrero-Zazo et al., 2013). The Drug-
Drug Interaction (DDI) dataset is tailored for iden-

tifying interactions between different drugs in
biomedical texts. Following Parmar et al. (2022),
this work considers only binary Relation Extrac-
tion (RE), determining whether there is an effect of
given two drugs. The data cannot be used for any
commercial purposes. We use 5 data for seeds, and
500 for evaluation. CC BY-NC 4.0.

Medical Drugs (Khan, 2019). This is a Senti-
ment Analysis (SA) dataset that is required to pre-
dict the sentiment of individuals towards medical
drugs. Specifically, given a text and a drug, a model
determines the effect of the drug as “positive", “neg-
ative", or “neutral". 5 training instances are used
for the seed construction, and 500 test set for eval-
uation. The license is unknown.

HoC (Baker et al., 2015). The Hallmarks of Can-
cer (HoC) dataset is curated for classifying (zero
to many) biomedical texts related to cancer into
categories representing different hallmarks of can-
cer. In particular, these hallmarks include “sustain-
ing proliferative signaling", “resisting cell death",
“genomic instability and mutation", “activating in-
vasion and metastasis", “tumor promoting inflam-
mation", “evading growth suppressors", “inducing



angiogenesis", “enabling replicative immortality",
“avoiding immune destruction" and “cellular ener-
getics". The number of evaluation data is 200 and
5 training data are used for seed demonstrations.
GPL-3.0 license.

B.2 Finance

EDT-Summarization (Zhou et al., 2021). This
dataset challenges models to perform abstractive
summarization on financial news articles, condens-
ing detailed information into succinct summaries.
8 training instances are used for seeds, and 500
instances for evaluation. This data is publicly avail-
able.

InsuranceQA (Feng et al., 2015). This is an
open-book question-answering task about insur-
ance, demanding models to extract and provide spe-
cific insurance-related information. Seed demon-
strations include 8 training data and the number
of evaluation instances is 500. This dataset is pro-
vided as is and for research purposes only.

ConvFinQA (Chen et al., 2022). This is a
dataset for conversational question-answering over
financial report tables, testing a model’s ability to
reason and respond within a conversational context.
We use 8 training data for the seed construction,
and evaluation uses 500 test instances. MIT license.

Fin3 (Salinas Alvarado et al., 2015). This is
a financial NER dataset based on financial agree-
ments to aid credit risk assessments. 8 training data
are used for seeds and 100 test data for evaluation.
CC-BY 3.0.

FiNER_139 (Loukas et al., 2022). This NER
task focuses on financial texts, where models iden-
tify and classify financial-related entities like num-
bers. This dataset includes a much larger label set
of 139 entity types. Seed data encompass 8 training
instances and the number of test data is 500. MIT
license.

KPI-EDGAR (Deußer et al., 2022). Models
are tasked with extracting key performance indica-
tors (KPIs) from financial documents. Categories
for KPIs include current and previous year val-
ues, annual changes, subordinate and descriptive
attributes, co-references, and false-positive. We
use 212 test instances for evaluation and 8 training
instances for seed demonstrations. MIT license.

EarningsCall (Roozen and Lelli, 2021). This is
a binary sentiment analysis task where models eval-
uate sentiments from stock values and transcripts
of earnings calls, reflecting the financial sentiments
expressed. 8 training instances are used for seeds,
and 500 test set for evaluation. CC0 1.0 license.

Financial_Phrasebank (Malo et al., 2014). This
dataset involves (3-way) sentiment analysis of fi-
nancial news headlines, assessing the underlying
sentiment conveyed by the language used. Com-
mercial uses of this data may be allowed upon con-
tacting the authors. 8 training data and 500 test
data used for seeds, and evaluation, respectively.
CC BY-NC-SA 3.0.

FIQA-SA (Maia et al., 2018). It consists of
aspect-based sentiment analysis tasks within finan-
cial texts, requiring models to discern sentiment
regarding specific aspects mentioned. The number
of evaluation data is 234 and seed demonstrations
include 8 training instances.

Gold Commodity News (Sinha and Khandait,
2021). This dataset involves classifying financial
news headlines about gold commodities into cate-
gories such as market movement direction or type
of financial news (e.g., direction up, down, past-
price, futurenews, etc). The seed data includes 9
binary-class version and also 9 multi-class version
of training set, and evaluation uses 500 multi-class
version of test data. The license of this data indi-
cates data files © original authors.

C Details of Experiments

In Table 6, we show the prompts used for our self-
specialization. For instruction generation, we lever-
age the prompt designed in self-instruct Wang et al.
(2022) with minimal change to make it suit to spe-
cialization. In particular, we ask a model for in-
structions about a targeted domain, and force it to
generate input together with the instruction, unlike
in Wang et al. (2022) that generates those sepa-
rately. In addition, we avoid using the specific
requirement in the prompt that asks to cover di-
verse topics, such as (quoting Wang et al. (2022))
“daily routines, travel and tourism health and well-
ness, cooking and recipes, personal finance, en-
vironmental issues, history and historical events,
literature and literary analysis, politics and current
events, psychology and mental health, art and de-
sign, mathematics and problem-solving, physics
and astronomy, biology and life sciences, chemistry



BIOMEDICINE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA
BioASQ-Factoid 30.90 37.35 47.56 55.04 51.96 57.61
BioASQ-List 46.06 46.99 47.57 44.55 35.09 42.17
BioASQ-Yesno3 21.20 85.27 10.80 94.00 8.80 95.20
PubMedQA 11.98 24.16 28.89 24.87 31.69 31.31

NER
AnatEM 9.63 11.99 7.57 15.76 6.59 21.25
BioNLP13CG 24.79 24.93 21.76 31.80 26.03 41.16
NCBI 18.46 14.35 27.88 43.11 17.99 46.54

RE DDI 51.00 49.40 49.20 51.60 49.38 53.40

SA Medical Drugs 35.00 65.80 11.40 54.60 11.40 32.80

DC HoC 2.44 6.01 13.91 7.61 62.84 62.65

Average 25.15 36.63 26.65 42.29 30.18 48.41

FINANCE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

SUM EDT-Summarization 6.40 21.90 13.97 24.00 13.87 23.56

QA
InsuranceQA 3.03 19.87 6.55 23.79 9.96 24.36
ConvFinQA 15.74 5.25 21.69 11.84 28.77 20.88

NER
Fin3 9.94 23.93 7.53 26.95 6.80 43.87
FiNER_139 10.24 14.84 36.78 25.81 44.34 35.63

RE KPI-EDGER 11.22 31.02 43.28 53.56 49.46 63.90

SA
EarningsCall 46.80 48.80 50.80 48.00 49.03 47.74
Financial_Phrasebank 23.60 73.20 9.40 47.60 29.20 68.80
FIQA-SA 44.44 56.84 58.55 61.54 61.54 70.09

CLS Gold Commodity News 21.95 43.03 61.93 55.08 38.42 61.20

Average 19.34 33.87 31.05 37.82 33.14 46.00

Table 1: Comparative results of the base LM and self-specialized one on a biomedical domain (top) and on a financial
domain (bottom). The base model is MPT-30B for biomedicine and LLaMA-2 7B for finance. Self-specialized ones
have the same parameters as the counterpart base model. Performances are reported using F1-SCORE. k indicates
the number of demonstrations in a prompt.

and materials science, computer science and pro-
gramming, engineering and technology, robotics
and artificial intelligence, economics and business
management, philosophy and ethics, and more".
For response generation, we use a simple prompt
to let a model answer with a target domain in mind.
Both prompts can be further enhanced and opti-
mized for better self-specialization performance in
future work.

Regarding our evaluations, we use prompt tem-
plates that were designed and used to optimize
each Alpaca (Taori et al., 2023) and Dromedary
(Sun et al., 2023), but no specific template for base
models, as they were not optimized for it during
pre-training. Ours employs a simple Alpaca tem-
plate for training and evaluation. We leverage pub-
licly available delta weights that are supposed to
be attached to LLaMA (Touvron et al., 2023a) for
Dromedary, and use the ones reproduced for Al-
paca in our work.

We use three seed demonstrations in-context,
which are randomly sampled from our initial seeds,
and sampling with top-p being 0.98 and tempera-
ture being 1.0 during instruction generation. For
response generation, we use no demonstrations in-
context since there is a high chance that the gener-
ated instruction task and the sampled one do not
match well. We believe further exploration of this
aspect would be valuable in future work. For fine-
tuning, we use a batch size of 32, a learning rate
of 3e-4, and epochs of 3. Low-rank adaptation
(LoRA) (Hu et al., 2022; Dettmers et al., 2023) is
applied to all modules and all layers with a rank of
8, and an alpha of 16. While we report single-run
results considering low-data settings where auto-
matic hyperparameter tuning might be infeasible,
we also report worst, average, and best across dif-
ferent k-shot configurations for each dataset to ad-
dress the concern of sensitivity (Appendix D) in
Table 5.



Model F1-SCORE ROUGE-L

w/ Top-5 Docs 34.57 32.88
w/ Top-1 Docs 29.65 27.90
w/o Retrieval 33.72 32.14

Base MPT-30B 25.15 23.75

Table 2: Ablation of self-specialization with retrieval
from unlabeled domain-specific documents. Zero-shot
average performance over 10 biomedical tasks.

Model F1-SCORE ROUGE-L

2nd Iter. 36.63 34.79
1st Iter. 34.57 32.88

Base MPT-30B 25.15 23.75

Table 3: Ablation of iterative self-specialization. Zero-
shot average performance over 10 biomedical tasks.

D Additioanl Results & Discussion

How effective is the self-specialization of base
models? In Table 1, we present the comparative
results of our self-specialized model against its base
counterpart across 10 distinct biomedical NLP and
10 financial NLP datasets. MPT-30B and LLaMA-
2 7B are used for biomedicine and finance, respec-
tively. The evaluation is conducted using various k
in-context demonstrations.

Our findings reveal that the self-specialized
model exhibits remarkable progress in the majority
of tasks across all configurations in both domains,
yielding a surprisingly substantial (up to 18 points)
improvement in average scores. Specifically, the
average scores (F1) in biomedicine rise from 30.18
to 48.41 in a 5-shot setting3.

In finance, the improvements of the self-
specialized model over the base model are 14.53
(0-shot), 6.77 (1-shot), and 12.86 (5-shot), re-
spectively. Importantly, the effectiveness of self-
specialization becomes evident as it uncovers the
latent expertise encoded within the generalist base
model, showcasing the potential of leveraging in-
herent knowledge for enhanced domain-specific
performance. These advancements in both domains
underscore the self-specialization’s generalizability
in addressing a wide array of tasks across different
specialized domains.

Effect of external knowledge. We investigate
the influence of incorporating domain-specific cor-
pus like PubMed in the response generation phase.
As observed in Table 2, there is a notable vari-

3Even excluding BioASQ-Yesno as an outlier due to the
base model’s low performance, self-specialization still shows
significant gain over the base model: 32.55 to 43.21 (5-shot).
Appendix D includes the detailed discussion.
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Figure 4: Results in biomedicine using LLaMA-2 7B
as a base model, and comparisons with other baselines
including the one pre-trained on a huge domain-specific
corpus. The results are presented using worst, average,
and best across 0-, 1-, and 5-shot results for each dataset.

ation in performance depending on the number
of documents incorporated. Our findings indi-
cate that the use of the top-5 documents yields
the best results. Interestingly, incorporating only
the top-1 document appears to degrade the perfor-
mance, a phenomenon we conjecture is due to the
noise originating from an imperfect retriever. Con-
versely, employing top-5 documents with probabil-
ity marginalization seems to mitigate this issue, en-
abling the model to exploit informative knowledge.
Nonetheless, we observe that self-specialization
demonstrates strong performance even without re-
trieval, suggesting the domain knowledge already
exists within LLMs in a latent state, which self-
specialization uncovers.

Effect of iterative self-specialization. In the
spirit of continuous improvement, our approach
optionally supports iterative self-specialization via
re-generating instructions and responses with the
better-aligned model. This process has the poten-
tial of refining the model’s domain expertise with
each iteration (of considering the previous itera-
tion as base each time), iteratively improving its
responses.

As evidenced in Table 3, initiating a “2nd Iter.”
of self-specialization results in further performance
enhancement.

Can self-specialization also be applied to a dif-
ferent model (or model size)? We investigate
self-specialization with a smaller (7B) LLaMA-
2 for the biomedical domain, which is deemed a
more challenging yet insightful endeavor due to its
relatively limited knowledge/capability. As shown
in Figure 4, the findings validate the efficacy of
self-specialization even at this scale. Furthermore,
we compare our model with existing baselines (Wu
et al., 2023): MedLLaMA-13B and PMC-LLaMA-
7B/-13B. MedLLaMA is a LLaMA variant further
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pre-trained on a huge domain-specific corpus (i.e.,
medicine), and PMC-LLaMA is further instruction-
tuned using existing annotated datasets as well as
synthetic datasets, encompassing medical QA, ra-
tionale for reasoning, and conversational dialogues.
Notably, we find that our self-specialized 7B model
is on par with or better than both MedLLaMA-
13B and PMC-LLaMA-13B despite their larger
parameters and extensive domain-specific training.
This further emphasizes the effectiveness of our
approach. Additionally, using our 7B-generated
data to specialize MedLLaMA indicates that self-
specialization can enhance domain-specific pre-
training, suggesting complementarity.

Impact of the number of self-generated data.
In Figure 5, we analyze the impact of the number
of self-specialization data within biomedical and
financial domains. Starting from zero, a sharp in-
crease in F1 score is observed as we introduce the
first 100 instances which largely consist of seed
instructions, underlining the significant impact of
seeds not only as in-context demonstrations but
also as training data. The performance continues to
rise steadily with additional data, plateauing around
5K instances, supporting our decision on the use
of 5K data. Self-specialization’s success with rela-
tively small self-generated data highlights its data
efficiency and practicality.

How is the quality of synthetic self-specialization
data? To quantitatively assess the quality of
the data generated through self-specialization, we
train a model using 3.7K instances of available
human-labeled data in a multi-task learning setting
and compare its performance to that of a model
trained on 5K instances of generated synthetic self-
specialization data, as depicted in Figure 7 in Ap-
pendix. Although the model trained on supervised

data exhibits higher performance as expected, the
performance gap between the two models is not
large, further underscoring the effectiveness of the
proposed self-specialization. In Figure 6, we show-
case a qualitative visualization that analyzes the
synthetic data generated through self-specialization.
Additionally, some examples are provided in Ta-
ble 7 & 8 in Appendix, offering insights into the
quality of the self-generated specialization data.

Qualitative analyses. While our study primar-
ily focuses on the biomedical and finance do-
main, the applicability and effectiveness of self-
specialization in another specialized domain whose
knowledge is relatively limited, such as sports, re-
main an open avenue for exploration. As an initial
effort, we present a case study of a self-specialized
model on sports in Table 9 & 10, along with the
visualization of generated data in Figure 8. We
hope that this could offer insights into the versatil-
ity of self-specialization, although the model is not
yet perfect, and thorough evaluations are required
in future work. Different domains inherently pose
unique requirements and nuances, and understand-
ing how self-specialization adapts to these varia-
tions is a valuable direction for future work.

On the sensitivity of prompting. In Table 1, we
observe the decreased performances with increased
demonstrations in certain cases such as BioASQ
and Medical Drugs. We conjecture this can be
attributed to the model’s sensitivity (Zhao et al.,
2021) or interference among demonstrations (Chen
et al., 2023) under in-context learning (ICL). In
fact, it can even be noticed in the original GPT-3 pa-
per (Brown et al., 2020) that additional demonstra-
tions do not always lead to better performance and
can indeed sometimes result in a notable decrease,
demonstrating an inherent challenge in ICL. Tak-
ing the worst, average, and the best across different
k-shot (0, 1, 5) configurations for each dataset to
address the concern of sensitivity, we still notice
the significant gaps between our self-specialization
and the base model, presented in Table 5.

On evaluation designs. In our study, as de-
scribed in Section A, we treat all tasks as a unified
text generation problem, aiming to assess the realis-
tic capabilities of following instructions, consistent
with established practices in biomedical instruc-
tion tuning literature (Parmar et al., 2022). As
briefly discussed, we observe that in Table 1, the
base model’s performance on BioASQ-Yesno is
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very low (below random), often failing to follow
instructions and generating text that is not confined
to the label space. We therefore treat this dataset
as an outlier and exclude it from our average cal-
culations. Even after removing this outlier, self-
specialization still has substantial gains over the
base model: 25.58 to 31.22 (0-shot), 28.42 to 36.55
(1-shot), and 32.55 to 43.21 (5-shot). However,
we believe that our current evaluation is fairer and
preferable, because in a realistic scenario where a
user prompts a model to solve a certain task (e.g.,
classification) without the assumption about a task
type, and gets a totally wrong response out of the
label space, evaluating such a response as correct
would not make sense.

The primary objective of our work is to en-
hance the base model’s domain-specific capabilities
through self-specialization, a process inherently dif-
ferent from conventional fine-tuning approaches.
Although the process utilizes LoRA for specializa-
tion, it is important to note that our approach funda-
mentally relies on synthetic data generated by the
model itself. This unique aspect sets our method
apart, as it effectively starts from scratch, focus-
ing on self-generated, domain-specific instructional
data for low-data scenarios. Finally, the base model
and the base model improved through our Self-
Specialization (using synthetic self-generated data)
are compared fairly in the same zero-shot/few-shot
setting.



F1-SCORE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.90 37.35 47.56 55.04 51.96 57.61
BioASQ-List 46.06 46.99 47.57 44.55 35.09 42.17
BioASQ-Yesno 21.20 85.27 10.80 94.00 8.80 95.20
PubMedQA 11.98 24.16 28.89 24.87 31.69 31.31

NER
AnatEM 9.63 11.99 7.57 15.76 6.59 21.25
BioNLP13CG 24.79 24.93 21.76 31.80 26.03 41.16
NCBI 18.46 14.35 27.88 43.11 17.99 46.54

RE DDI 51.00 49.40 49.20 51.60 49.38 53.40

SA Medical Drugs 35.00 65.80 11.40 54.60 11.40 32.80

DC HoC 2.44 6.01 13.91 7.61 62.84 62.65

Average 25.15 36.63 26.65 42.29 30.18 48.41

ROUGE-L k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.70 37.31 47.35 54.71 51.81 57.48
BioASQ-List 41.07 40.65 42.38 38.50 30.40 36.24
BioASQ-Yesno 21.20 85.27 10.80 94.00 8.80 95.20
PubMedQA 9.15 18.88 22.78 18.52 24.56 24.77

NER
AnatEM 8.65 10.69 6.67 13.83 6.07 19.24
BioNLP13CG 20.41 20.34 19.02 27.54 22.53 35.07
NCBI 17.94 13.75 25.22 39.27 16.60 41.55

RE DDI 51.00 49.40 49.20 51.60 49.38 53.40

SA Medical Drugs 35.00 65.80 11.40 54.60 11.40 32.80

DC HoC 2.42 5.83 13.88 7.61 62.84 62.61

Average 23.75 34.79 24.87 40.02 28.44 45.84

Table 4: Comparative results (F1-SCORE & ROUGE-L) of the base LM (MPT-30B) and self-specialized one (30B)
on a biomedical domain. k indicates the number of demonstrations in a prompt. ROUGE-L exhibits the same trend
with F1-SCORE.
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Figure 7: 5-shot results based on Falcon-40B and MPT-30B, showcasing the self-specialization gains. “Multi-Task
Supervised" is a model trained on a large amount of human-labeled data in a multi-task setting and is provided for
reference as a (non-data-efficient, expensive) upper bound.



BIOMEDICINE Worst Average Best

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.90 37.35 43.47 50.00 51.96 57.61
BioASQ-List 35.09 42.17 42.91 44.57 47.57 46.99
BioASQ-Yesno 8.80 85.27 13.60 91.49 21.20 95.20
PubMedQA 11.98 24.16 24.19 26.78 31.69 31.31

NER
AnatEM 6.59 11.99 7.93 16.33 9.63 21.25
BioNLP13CG 21.76 24.93 24.19 32.63 26.03 41.16
NCBI 17.99 14.35 21.44 34.67 27.88 46.54

RE DDI 49.20 49.40 49.86 51.47 51.00 53.40

SA Medical Drugs 11.40 32.80 19.27 51.07 35.00 65.80

DC HoC 2.44 6.01 26.40 25.42 62.84 62.65

Average 19.62 32.84 27.33 42.44 36.48 52.19

FINANCE Worst Average Best

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

SUM EDT-Summarization 6.40 21.90 11.41 23.15 13.97 24.00

QA
InsuranceQA 3.03 19.87 6.51 22.67 9.96 24.36
ConvFinQA 15.74 5.25 22.07 12.66 28.77 20.88

NER
Fin3 6.80 23.93 8.09 31.58 9.94 43.87
FiNER_139 10.24 14.84 30.45 25.43 44.34 35.63

RE KPI-EDGER 11.22 31.02 34.65 49.49 49.46 63.90

SA
EarningsCall 46.80 47.74 48.88 48.18 50.08 48.80
Financial_Phrasebank 9.4 47.60 20.73 63.20 29.20 73.20
FIQA-SA 44.44 56.84 54.84 62.82 61.54 70.09

CLS Gold Commodity News 21.95 43.03 40.77 53.10 61.93 61.20

Average 17.60 31.20 27.84 39.23 35.99 46.59

Table 5: Comparative results of the base LM and self-specialized one on a biomedical domain (top) and on a financial
domain (bottom). The base model is MPT-30B for biomedicine and LLaMA-2 7B for finance. Self-specialized ones
have the same parameters as the counterpart base model. Performances are reported using F1-SCORE. The results
are presented using worst, average, and best across 0-, 1-, and 5-shot results for each dataset.
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Figure 8: Statistics for instructions (left) and input context (right) generated through self-specialization toward the
sports domain, with 40 seeds, 1st iteration only, and no retrieval component. On the left, the inner circle illustrates
prevalent verbs in the instructions, with the outer ring revealing associated entities. Conversely, the right side
showcases the input context, highlighting the diverse sports keywords generated by the model in the process of
self-specialization. Best viewed in zoom and color.

Instruction Generation Prompt

You are asked to come up with a set of 20 diverse task instructions about a biomedical domain. These task
instructions will be given to a GPT model and we will evaluate the GPT model for completing the instructions.

Here are the requirements:
1. Try not to repeat the verb for each instruction to maximize diversity.
2. The language used for the instruction also should be diverse. For example, you should combine questions with
imperative instructions.
3. The type of instructions should be diverse. The list should include diverse types of tasks like open-ended
generation, classification, editing, etc.
4. A GPT language model should be able to complete the instruction. For example, do not ask the assistant to create
any visual or audio output. For another example, do not ask the assistant to wake you up at 5pm or set a reminder
because it cannot perform any action.
5. The instructions should be in English.
6. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is permitted.
7. You should generate an appropriate input to the instruction. The input field should contain a specific example
provided for the instruction. It should involve realistic data and should not contain simple placeholders. The
input should provide substantial content to make the instruction challenging.
8. Ensure diverse tasks are covered in the instructions and inputs, while focusing on a biomedical domain.

List of 20 tasks:

Response Generation Prompt

You are a biomedical domain expert. Given an instruction and an input, generate the best response to solve the given
biomedical task.

Table 6: Prompts used for instruction generation and response generation.



Instruction
The aim of this task is to identify the functional categories and chemical categories associated with a data record.
The record is given in a pre-defined form and followed by a set of supporting sentences that might be relevant. In
particular, for each data record, a triplet of functional categories, molecular categories and chemical categories
associated with the data record will be provided. The task is to find some relations between records and supporting
evidence that can support the given relations.

Input
Data record: Atom, CNA, NOC, NFT
Text: Cisplatin and carboplatin, two drugs that are used to treat testicular and ovarian cancers, are not effective
in treating breast cancer

Output
The functional category of cisplatin is CNA. The chemical category of cisplatin is NOC. The molecular category of
cisplatin is NFT.

Instruction
In this task, you are given a short article and question. Read the short article and answer the question.

Input
Short article: The extract from the opium poppy was tested on breast cancer cells and was found to inhibit the
migration and invasion of breast cancer cells.
Question: Was the extract more potent in its inhibitory effect on the migration of breast cancer cells than its
effect on the invasion of breast cancer cells?

Output
Yes.

Instruction
In this task, you are given a paragraph, and your task is to categorize the entities from the given input into two
types: Dyes and Protein Molecules. The defined types here is based on the medical specialty such that dyes are
typically for understanding human metabolism.

Input
Paragraph: Thus in an effort to improve the characterization of such compounds an alternative glycosylation labeling
strategy was implemented based on malonate attachment to glucosamine and sond glycosyltransferase inactivation.

Output
Dyes: malonate, Protein Molecules: glucosamine, sond glycosyltransferase.

Instruction
In this task, you are given a small paragraph, your task is to identify the relationship between the variables.
Find the most likely to be correct relationship of a gene with its characteristics. For example, if one entity is
pathway, then you need to find the type of relationship that specific gene is related to that pathway. Give the most
appropriate relationship type and tokens separating two variables. Given an input, determine the relationship type.

Input
COPD is a major cause of morbidity and mortality throughout the world, with over three million deaths per year
Pathway: respiratory system Pathway: stress Hsa-miR-30b-5p is a regulator of retinal ganglion cell apoptosis through
regulating the PTEN/AKT signaling pathway in glaucoma.

Output
Hsa-miR-30b-5p is a regulator of retinal ganglion cell apoptosis through regulating the PTEN/AKT signaling pathway
in glaucoma.

Instruction
In this task, you are given a question and a sentence as context. You need to find the answers to the question
in the given context. You can either answer the question or ask a question. Given the question, a context or a
question, this task must either answer the question or ask a question.

Input
Question: For what drugs can predict the effect of changing the dose
Context: Metoprolol is a commonly used beta-blocker, which competitively blocks beta-adrenergic receptors in the
myocardium. Adrenergic beta-blockers do not antagonize the presynaptic beta-1 receptors in the conduction system.
While they thus prolong the ventricular conduction time, they do not alter conduction velocity. Metoprolol is
therapeutically active over the heart rate range of 40 to 100 bpm, and may be particularly effective for the rate
control of atrial fibrillation. The beta-blocking action of metoprolol is accompanied by an increase in stroke
volume.

Output
The beta-blocking action of metoprolol is accompanied by an increase in stroke volume.

Table 7: A list of examples (#1) of generated data on biomedicine through self-specialization.



Instruction
In this task, you are given a drug name, and the side effect caused due to this drug (e.g., nausea). Your job is to
generate other side effects in which this drug often causes.

Input
Drug_1: Phentermine Drug_2: Nausea

Output
Headache, insomnia, constipation, dry mouth, diarrhea, anorexia, increased blood pressure, increased heart rate,
increased appetite, dizziness, nervousness, restlessness, irritability, tremor, rash, itching, and urticaria.

Instruction
Given a premise and a hypothesis sentence, your task is to identify if the premise supports the hypothesis or the
premise contradicts the hypothesis sentence. Your task is to identify if the evidence in the premise supports or
contradicts the hypothesis. There is no other alternative. You can select two labels for this task: Support or
Contradict.

Input
Premise: If too much calcium enters the sea, if causes it to become more acidic in a process called "ocean
acidification". Hypothesis: The ocean will become acidic.

Output
The vitamin did not seem to work for malaria. It was noted that the protein has is able to contact the insulin-like
growth factor - 1 receptor, so an antagonist was made using a modified version of the protein.

Instruction
In this task, given the title of scientific study, your task is to generate a paper abstract or summary based on
the given information.

Input
Title of study "Type and impact of end-user requests for application programming interfaces in three health-related
internet services"

Output
The study found that the majority of end-user requests for application programming interfaces (APIs) in three
health-related internet services were for data access. The study also found that the most common type of request
was for data access, followed by data analysis and data visualization. The study also found that the most common
impact

Instruction
In this task, you are given a question as input, and your task is to give answer it by generating a list of drugs
which can be used for the treatment of the symptom. If the symptom is rare, the answer list should contain its
corresponding differential diagnosis. Given a question related to symptoms, generate a list of drugs and differential
diagnosis from open vocabulary.

Input
Question: What are the signs and symptoms of Leptospirosis?

Output
Fever, headache, muscle aches, nausea, vomiting, abdominal pain, diarrhea, cough, and red eyes. Differential
diagnosis: Leptospirosis, Lyme disease, Rocky Mountain spotted fever, and dengue fever.

Instruction
In this task, you are given a list of paragraphs. The list contains sentences related to a particular biomedical
concept and sentences not related to a particular biomedical concept. Classify these sentences as true or false.
Answer if the sentences in the input are true or false. True indicates that all the sentences of the list are true
for the given biomedical concept. False indicates that only one of the given sentences is false, while the rest of
them are true.

Input
Some of the complications associated with developing small molecules for FGFR1 and KRAS targetable therapeutic
compounds are revealed as the targets have low single amino acid sequence identity between species and both are,
at least partially, regulated by post-translational modifications. S. Kisor, S. Khankorn, "Drug discovery from big
data: past, present, and future.", Outline, January 2013.

Output
False

Table 8: A list of examples (#2) of generated data on biomedicine through self-specialization.



Model Base MPT-30B Self-Specialized MPT-30B

Instruction Given a live commentary for a sports game, generate plausible sports news highlights.

Input Context

Commentary

1. Full-time at the Etihad. Manchester City JUST manage to claim all three points in this Premier

League clash as they overcome Swansea with a narrow 2-1 scoreline. The man of the match was Gabriel

Jesus, who netted two goals, including the dramatic winner in the 92nd minute, which will prove to

be a massive blow for the Swans.

2. GOOOOAAAALLLL! GOOOAAALLL FOR MANCHESTER CITY! ...

...

Response
A: I think you should try to use a pre-trained

model for the encoder and decoder.

...

News:

- Manchester City have come from behind to beat

Swansea 2-1 in a thrilling Premier League clash at

the Etihad Stadium.

...

Instruction
This task aims to predict the sentiment of a tweet about sports. Given a tweet about football

written by a real user, select an answer (polarity) among "Positive”, "Negative” and "Neutral”.

Input Context
@user1 @user2 @user3 @user4 @user5 Now, PSG is considered a weak team. Poor ignorant. When Barça

lost 3-0, it was because we faced PSG without Neymar. But now that Real Madrid eliminated them,

suddenly PSG is a weak team. ... ...

Response Positive Negative

Instruction
In this task, you are given a sentence related to sports. Your job is to determine whether the

provided sentence makes sense. You need to produce an answer as "plausible” or "implausible”.

Input Context Lionel Messi hit a three-run homer.

Response Plausible Implausible

Instruction
In this task, you are given a question and a context about sports, and you need to answer the

question based on the given context.

Input Context

Passage (Live Commentary):

As the match reaches a decisive point, Williams, the tennis star, finds herself engaged in a

fierce rally. Her opponent delivers a powerful cross-court forehand that seems destined for a

winner. However, Williams displays incredible reflexes and anticipation, executing a lightning-fast

backhand passing shot down the line that catches her opponent off guard and secures the point.

Question: What remarkable shot did the player execute to win the crucial point?

Answer Choices:

a) Williams delivered a drop shot to surprise her opponent.

b) Williams hit a powerful forehand winner cross-court.

c) Williams executed a precise backhand passing shot.

d) Williams served an ace to win the point.

Response a) Williams delivered a drop shot to surprise her

opponent.

c) Williams executed a precise backhand passing

shot.

Instruction
In this task, you are given a question about sports. Answer the question based on your implicit

knowledge.

Input Context What does the term "love" mean in tennis scoring?

Response It means that the player has won the game. Love is a score of zero in tennis.

Table 9: Case study on sports domain. Self-Specialized model produces better responses given the same instruction
about sports.



Model Base MPT-30B Self-Specialized MPT-30B

Instruction
In this task, you are given a set of attribute-value pairs about sports in the raw XML format.

Generate a natural language text describing the given data.

Input Context

<originaltripleset>

<otriple>batterName | Pujols</otriple>

<otriple>finalScore | 16-7</otriple>

<otriple>gameTally | 2-1</otriple>

<otriple>hasLostTeam | Texas_Rangers</otriple>

<otriple>hasWonTeam | St._Louis_Cardinals</otriple>

<otriple>hitNumber | five</otriple>

<otriple>homeRunNumber | three</otriple>

<otriple>matchDate | Saturday_night</otriple>

<otriple>pitchResult | homers</otriple>

<otriple>runNumber | six</otriple>

</originaltripleset>

Response
Albert Pujols hit three home runs and drove in

five runs as the St. Louis Cardinals beat the

Texas Rangers 16-7 on Saturday night.

Pujols hit five home runs and drove in six runs

as the St. Louis Cardinals beat the Texas Rangers

16-7 on Saturday night.

Instruction
In this task, you are given a sentence related to sports. Your job is to determine whether the

provided sentence makes sense. You need to produce an answer as "plausible” or "implausible”.

Input Context Mike Trout took ball four in the World Series.

Response Implausible Implausible

Instruction
In this task, you are given a question and a context about sports, and you need to answer the

question based on the given context.

Input Context

Passage (Live Commentary):

With two runners on base and a full count, Johnson, the opposing team’s batter, faced an intense

battle against the pitcher. The tension reached its peak as the pitcher delivered a devastating

curveball, catching Johnson off guard. He swung and missed, resulting in a resounding strikeout

that ended the inning and stranded the runners.

Question: When did the pitcher deliver a crucial strikeout to end the inning?

Answer Choices:

a) At the start of the inning, Johnson struck out.

b) After a series of foul balls, Johnson hit a double.

c) At the end of the inning, Johnson grounded out.

d) With a full count, Johnson struck out to end the inning.

Response a) At the start of the inning, Johnson struck

out.

c) At the end of the inning, Johnson grounded

out.

Table 10: Case study on sports domain. Negative cases where both models produce wrong responses are presented.
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