
Word Embeddings Revisited: Do LLMs Offer Something New?

Matthew Freestone, Shubhra Kanti Karmaker Santu
BDI Lab, Auburn University, Alabama, USA

{maf0083, sks0086}@auburn.edu

1 Introduction

Learning meaningful word embeddings is key to
training a powerful language model. The rise of
Large Language Models (LLMs) has provided us
with many new word embedding models recently.
Although LLMs have shown remarkable advance-
ment in various NLP tasks (Bubeck et al., 2023;
Dai et al., 2022; Du et al., 2022; Smith et al., 2022),
it is still unclear whether the performance improve-
ment is merely because of scale or whether the
underlying embeddings they produce are signifi-
cantly different from classical encoding models like
Sentence-BERT or Universal Sentence Encoders.
In this paper, we systematically investigate this is-
sue by comparing classical embedding techniques
against LLM-based embeddings in terms of their
latent vector semantics.

2 Experiments and Results

2.1 Embeddings
A sampling of models from the last five years will
be used to create a multitude of embeddings for ex-
perimentation. We classify these models into two
broad categories: Large Language Models (LLMs)
– models with over 1B parameters, and "Classical"
models – those with under 1B parameters. These
embedding models, with their respective embed-
ding length, are as follows:

1. GPT-ADA-002 (LLM) (Brown et al., 2020) -
1536

2. LLAMA2-7B (LLM) (Touvron et al., 2023) -
4096

3. PaLM-Gecko-001 (LLM) (Chowdhery et al.,
2022) - 768

4. USE (Classical) (Cer et al., 2018) - 512
5. LASER (Classical) (Artetxe and Schwenk,

2019) - 1024
6. SBERT (Classical) (Reimers and Gurevych,

2019) - 384

2.2 Similar Word Closeness

Q: Do LLM embeddings capture related-word sim-
ilarity more strongly than classical models?
To answer this question, a corpus of approximately
80, 000 well-distributed words was created from
WordNet (Fellbaum, 1998). The vector represen-
tations for all of these words were created from
each embedding. The distribution of cosine simi-
larities of all pairs of words (≈ 6.4 billion pairs)
was found as a baseline for future tests. The BATS
dataset provides pairs of related words across many
categories, which describe how those words are
related. The distribution of cosine similarities be-
tween these pairs of words (by broad category) next
to the distribution of non-related pairs of words for
all embeddings is shown in Figure 2.
From this visualization, we can see that ADA,
PALM, and SBERT showed the strongest sep-
aration of related words from all words across
both broad categories of analogies. In all models,
morphologically-related words were more similar
to each other than semantically-related ones. In
some models, especially USE, the semantically-
related word pairs were distributed in similarity
nearly the same as all words pairs.
Some LLMs, particularly ADA and PALM, capture
semantic relations between words more strongly
than classical models.

2.3 Analogy Tasks

Q: How do LLMs perform on word analogy tasks,
and are certain methods more or less effective on
them?
The analogy tasks proposed by (Mikolov et al.,
2013) were evaluated on different models using
BATS word pairs. Different approaches such as
3CosAdd, PairDistance, 3CosMul, 3CosAvg, LR-
Cos, SimilarToAny, and SimilarToB were tested.
We measure top-1 accuracy, excluding analogy in-
put words from the possible answers. The same
word corpus was used for all models. Results



Method 3CosAdd 3CosAvg 3CosMul LRCos PairDistance SimilarToAny SimilarToB
Model Name

ADA-002 0.412 0.447 0.424 0.375 0.232 0.058 0.135
LASER 0.227 0.260 0.237 0.284 0.121 0.032 0.076
LLAMA2 0.145 0.200 0.145 0.131 0.053 0.039 0.082
PaLM 2 0.398 0.458 0.417 0.534 0.193 0.060 0.123
SBERT 0.243 0.261 0.267 0.487 0.086 0.067 0.141
USE 0.174 0.212 0.187 0.450 0.025 0.043 0.107

Table 1: Results of BATS analogy task for each model by method.

(a) Kendal τ (b) Spearman ρ

Figure 1: Correlation coefficients for each pair of models, found using a large dataset of pairs of words.

Figure 2: Distribution of random set of words plotted
against distribution of lexicographically and semanti-
cally related words.

showed ADA and PALM performing well with
3Cos-style methods, whereas LLAMA lagged be-
hind. LRCos notably boosted accuracy for SBERT
and USE and achieved the highest overall accuracy
with PALM embeddings. A short summary of each
model’s accuracy is given in Figure 1.
LLMs (ADA and PALM) performed very well with
the 3CosAvg method, and all LLMs saw less benefit
from the LRCos method than classical models.

2.4 Model Agreement on Similarity

Q: Do LLM Embeddings agree on the relative sim-
ilarity of words compared to classical models?
In order to create a direct comparison on the simi-
larity of models in general, statistical measures of
correlation can be used. First, all the cosine similar-
ity of all pairs of words in the Section 2.2 corpus is
found for each model. These similarities can now
act as an annotated "score" for each word pair, and
because the corpus of words is common, correla-
tion between two different embeddings’ scores can
be measured. Both Kendall’s τ and Pearson’s ρ
between each pair of models is shown in Figure
1. This metric shows SBERT and ADA-002 to be
the most similar models, while USE and ADA are
most different.
Two of the LLMs, PaLM and ADA tended to agree
with each other, but they also surprisingly mean-
ingfully agree with SBERT.

A Appendix

See Table 2 for a more granular description of the
performance of each model on specific categories
of BATS.



Model Analogy Method 1. Inflectional
Morphology

2. Derivational
Morphology

3. Encyclopedic
Semantics

4. Lexicographic
Semantics

LLAMA2-7B 3CosAdd 0.230 0.271 0.055 0.023
LLAMA2-7B 3CosAvg 0.326 0.362 0.086 0.026
LLAMA2-7B 3CosMul 0.230 0.276 0.053 0.022
LLAMA2-7B LRCos 0.150 0.148 0.176 0.050
LLAMA2-7B PairDistance 0.066 0.130 0.013 0.001
LLAMA2-7B SimilarToAny 0.065 0.043 0.037 0.011
LLAMA2-7B SimilarToB 0.130 0.118 0.054 0.026
PaLM-Gecko-001 3CosAdd 0.743 0.609 0.118 0.122
PaLM-Gecko-001 3CosAvg 0.794 0.668 0.232 0.136
PaLM-Gecko-001 3CosMul 0.768 0.648 0.128 0.124
PaLM-Gecko-001 LRCos 0.780 0.714 0.404 0.238
PaLM-Gecko-001 PairDistance 0.466 0.249 0.048 0.008
PaLM-Gecko-001 SimilarToAny 0.165 0.027 0.011 0.035
PaLM-Gecko-001 SimilarToB 0.270 0.082 0.030 0.108
GPT-ADA-002 3CosAdd 0.761 0.677 0.115 0.097
GPT-ADA-002 3CosAvg 0.802 0.734 0.148 0.102
GPT-ADA-002 3CosMul 0.776 0.697 0.122 0.100
GPT-ADA-002 LRCos 0.606 0.482 0.280 0.132
GPT-ADA-002 PairDistance 0.546 0.323 0.052 0.006
GPT-ADA-002 SimilarToAny 0.155 0.044 0.005 0.029
GPT-ADA-002 SimilarToB 0.276 0.134 0.038 0.090
LASER 3CosAdd 0.431 0.434 0.022 0.022
LASER 3CosAvg 0.484 0.506 0.030 0.020
LASER 3CosMul 0.448 0.454 0.023 0.023
LASER LRCos 0.510 0.482 0.116 0.028
LASER PairDistance 0.230 0.245 0.009 0.003
LASER SimilarToAny 0.087 0.027 0.004 0.007
LASER SimilarToB 0.198 0.072 0.012 0.020
USE 3CosAdd 0.397 0.156 0.039 0.103
USE 3CosAvg 0.442 0.190 0.084 0.132
USE 3CosMul 0.436 0.165 0.049 0.100
USE LRCos 0.722 0.412 0.396 0.270
USE PairDistance 0.076 0.012 0.008 0.005
USE SimilarToAny 0.101 0.032 0.006 0.035
USE SimilarToB 0.204 0.098 0.026 0.098
SBERT 3CosAdd 0.461 0.393 0.046 0.073
SBERT 3CosAvg 0.474 0.418 0.058 0.092
SBERT 3CosMul 0.506 0.424 0.062 0.074
SBERT LRCos 0.808 0.642 0.270 0.228
SBERT PairDistance 0.135 0.184 0.021 0.003
SBERT SimilarToAny 0.178 0.065 0.003 0.019
SBERT SimilarToB 0.302 0.154 0.020 0.088

Table 2: BATS performance across categories with methods.
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