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Abstract

This paper investigates the use of large lan-
guage models (LLMs) for extracting sample
lists of polymer nanocomposites (PNCs) from
materials science research papers. The chal-
lenge lies in the complex nature of PNC sam-
ples, which have numerous attributes scattered
throughout the text. To address this, we intro-
duce a new benchmark and a novel evaluation
technique for this task and examine different
LLM prompting strategies: end-to-end prompt-
ing to directly generate entities and their rela-
tions, as well as a Named Entity Recognition
and Relation Extraction (NER+RE) approach,
where entities are first identified, followed by
relation classification. We also incorporate self-
consistency to improve LLM performance. Our
findings show that even advanced LLMs, such
as GPT-4 Turbo, struggle to extract all of the
samples from an article. However, condensing
the articles into the relevant sections can help.

1 Introduction

Research publications are the main source for the
discovery of new materials in the field of materials
science, providing a vast array of essential data.
The creation of structured materials databases from
these publications is essential for enhancing the
speed and efficiency of material discovery. This
is evident in the achievements of Al tools such as
GNoME (Merchant et al., 2023). Yet, the unstruc-
tured presentation of this data in journals makes it
challenging to extract valuable information and uti-
lize it for future discoveries (Horawalavithana et al.,
2022). Furthermore, manually extracting material
details from articles is inefficient and error-prone.
Hence, there’s a growing need for an automated
system that can transform these valuable data into
a structured, machine-readable format for more
efficient retrieval and analysis (Yang, 2022).
Scientific literature on polymer nanocomposites
(PNCs) provides key insights into their composi-
tions and properties, essential for material science
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Figure 1: A snippet from a PNC research article (Dal-
mas et al., 2007) and the extracted PNC sample list from
the NanoMine database. Note how information for a
single sample is extracted from multiple parts of the
article text.

innovation. PNCs, made by combining polymer
matrices with nanoscale fillers, offer customizable
mechanical, thermal, and electrical characteristics.
The variety in PNCs comes from different matrix-
filler combinations, each impacting the composite’s
properties. However, extracting this information is
challenging due to its dispersion across texts, fig-
ures, tables, and the complexity of defining each
sample by multiple attributes. An example in Fig-
ure 1 illustrates how sample details can be spread
over various paper sections.

In this paper, we use the NanoMine (Zhao et al.,
2018) data repository to construct PNCExtract, a
benchmark designed for extracting PNC sample
lists from scientific texts using large language mod-
els (LLMs). PNCExtract focuses on the systematic
extraction of N-ary relations across different parts
of full-length peer-reviewed PNC articles, captur-
ing the unique combination of matrix, filler, and
composition in each sample (see Appendix A.1l
for details). Prior research on information extrac-
tion from materials science literature, such as the
works of Dunn et al. (2022), Song et al. (2023),
and Xie et al. (2023), primarily focused on informa-



Model Strict Partial
Prec. Rec. F1 Prec. Rec. F1
Condensed Papers
GPT-4 Turbo (E2E) 433 294 350 669 440 53.1
GPT-4 Turbo (NER+RE) 27.0 352 305 - - -
GPT-4 Turbo + SC (E2E) 450 31.8 373 69.7 474 564
Full Papers
GPT-4 Turbo (E2E) 37.8 229 285 664 39.1 492
GPT-4 Turbo (NER+RE) 319 343 33.0 - - -
GPT-4 Turbo + SC (E2E) 425 283 339 657 434 523

Table 1: Precision, Recall, and F; of GPT-4 Turbo on condensed and full papers using strict and partial metrics.
The table includes GPT-4 Turbo with NER+RE and E2E prompting, as well as an enhancement on E2E using

self-consistency (SC).

tion extraction from specific sentences or passages.
PNCExtract, on the other hand, requires models to
analyze entire papers to aggregate information dis-
persed across the various sections of a paper, a key
challenge highlighted by Hira et al. (2023). Conse-
quently, we leverage the advanced token limits of
GPT-4 Turbo (OpenAl, 2023) in our study.

We also introduce a dual-metric evaluation sys-
tem, featuring a partial metric for attribute-level
analysis within an /V-ary extraction and a strict met-
ric for overall accuracy, addressing the limitations
of prior works that either focused on binary rela-
tions (Dunn et al., 2022; Xie et al., 2023; Song et al.,
2023; Wadhwa et al., 2023) or applied strict criteria
without acknowledging partial matches (Cheung
et al., 2023). This system provides a comprehen-
sive assessment by recognizing the complexity of
PNC samples. Evaluating model performance in-
volves checking for exact and partial matches be-
tween predicted and ground-truth samples. The par-
tial metric rewards predictions for partial accuracy,
employing a maximum weight bipartite matching
algorithm to optimally align predicted and ground-
truth samples. This approach ensures a balanced
evaluation that appreciates the detailed, attribute-
rich nature of PNC samples (see Appendix A.2 for
details).

We explore two prompting strategies for LLMs
in a zero-shot context. The first approach aligns
with the principles of Named Entity Recognition
(NER) and Relation Extraction (RE), which we
refer to as NER+RE which involves a two-stage
pipeline: initially, entities within the text are iden-
tified, and subsequently, valid relations between
these entities are extracted, a technique also ex-
plored by Zhou et al. (2022) and Tang et al. (2023).
However, this approach can become expensive due

to the complexity of PNC samples, which feature
multiple attributes, leading to an exponential in-
crease in the number of candidate relations. Our
second prompting strategy adopts an end-to-end
(E2E) method by directly generating the N-ary ob-
jects (see Appendix B for details). We find that the
E2E approach works better in terms of both accu-
racy and efficiency. Moreover, we present a simple
extension to the self-consistency technique (Wang
et al., 2023) for list-based predictions by sampling
multiple times from the LLM and aggregating the
lists through majority voting.

In Table 1, we report that models significantly
improve when analyzing condensed versions of
papers (see Appendix C.1 for details). The E2E
prompting method exceeds the NER+RE technique
in terms of accuracy. Additionally, applying self-
consistency leads to performance improvements in
both condensed and full paper settings.

2 Conclusion and Future Works

We introduced PNCExtract, a benchmark for ex-
tracting PNC samples from scientific articles, ex-
ploring NER+RE and E2E prompting strategies,
alongside adapting self-consistency for list-based
predictions. We also developed a novel partial eval-
uation method. Our results indicate that future re-
search should explore more sophisticated retrieval
methods. Additionally, there could be significant
benefits from adopting multimodal strategies that
combine text and visual data, as well as experi-
menting with few-shot learning or fine-tuning tech-
niques to enhance the precision of chemical name
identification.
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A PNCExtract Benchmark

A.1 Dataset

A.1.1 NanoMine Data Repository

NanoMine (Zhao et al., 2018) is a PNC data repos-
itory structured around an XML-based schema de-
signed for the representation and distribution of
nanocomposite materials data. The NanoMine
database, manually curated using Excel templates
provided to materials researchers, consists of a
broad array of potential schema entries. These
entries are categorized into several major sections,
such as Materials Composition, Processing, and
Properties. The Materials Composition section cov-
ers characteristics of the constituent materials, in-
cluding the polymer matrix and the filler particle.
Processing details the description of chemical syn-
thesis. The Properties section provides measured
data on materials performance and response, with
each section containing numerous entries.

A typical sample in NanoMine uses only a frac-
tion of the possible 350 terms that keep evolving.
NanoMine database currently contains a list of 240
full-length scholarly articles and their correspond-
ing PNC sample lists. While NanoMine includes
various subfields, our study focuses on the “Mate-
rials Composition” section. This section compre-
hensively details the characteristics of constituent
materials in nanocomposites, including aspects like
the polymer matrix, filler particles, and their com-
positions (expressed in volume or weight fractions).
The reason for this focus is that determining which
samples’s composition were studied in a given pa-
per is the essential first step towards identifying and
understanding more complex properties of PNCs.
Out of the 240 articles, we focus on 193 and dis-
regard the rest due to having inconsistent format.
These 193 articles contain a total of 1052 samples.

A.1.2 Dataset Curation and Cleaning

During our curation process, we selectively disre-
gard certain attributes from NanoMine based on
three criteria:

* Complexity in Extraction and Evaluation: At-
tributes that cannot be directly extracted with

a language model or evaluated are disregarded.
For example, intricate descriptions (such as
“an average particle diameter of 10 um”) are
excluded due to their complexity in evalua-
tion.

Rarity in the Dataset: We also disregard at-
tributes infrequently occurring in NanoMine.
For instance, ‘“Tacticity” is noted in only
0.05% of samples. This rarity might stem
from either its infrequent mention in research
papers or oversights by annotators.

Relative Importance: Attributes that are less
important for our analysis, such as “Manu-
facturer Or Source Name”, are also excluded.
Our focus is on extracting attributes that are
most relevant for identifying a nanocomposite
sample.

This filtering process retains 6 out of the 43 to-
tal attributes in the Materials Composition of
NanoMine.

A.1.3 Problem Definition

We define our dataset as D = {D1, Ds, ..., D193},
where each D; is a peer-reviewed paper included
in our study. Corresponding to each paper D;,
there is an associated list of samples S;, compris-
ing various PNC samples. Formally, S; is defined
as S; = {si1, Si2,- - -, Sin, }» Where s;; represents
the j-th PNC sample in the sample list of the ¢-
th paper, and n; denotes the total number of PNC
samples in S;. Each paper has 5.72 samples on
average. Each sample s;; is a JSON object with six
entries: Matrix Chemical Name, Matrix Chemical
Abbreviation, Filler Chemical Name, Filler Chem-
ical Abbreviation, Filler Composition Mass, and
Filler Composition Volume. Table 2 presents the
count of samples with each attribute marked as non-
null. The primary task involves extracting a set of
samples S; from a given paper D;.

Attribute Number of Samples
Matrix Chemical Name 1052
Matrix Chemical Abbreviation 864
Filler Chemical Name 1052
Filler Chemical Abbreviation 819
Filler Mass 624
Filler Volume 407

Table 2: Number of total samples for which each of the
attributes is non-null.
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Figure 2: Two prompting strategies for PNC sample extraction with LLM are presented. On the left, the end-to-end
(E2E) approach uses a single prompt to directly extract PNC samples. On the right, the NER+RE approach first
identifies relevant entities and then classifies their relations through yes/no prompts to validate PNC samples.

A.2 Evaluation Metrics

Our task involves evaluating the performance of our
model in predicting PNC sample lists. One natural
approach, also utilized by Cheung et al. (2023), is
to verify if there is an exact match between the pre-
dicted and the ground-truth samples. This method,
however, has a notable limitation, particularly due
to the numerous attributes that define a PNC sam-
ple. Under such strict evaluation criteria, a pre-
dicted sample is considered entirely incorrect if
even one attribute is predicted inaccurately, which
can be too strict considering the complexity and
attribute-rich nature of PNC samples.

Hence, we also propose a partial metric which
rewards predicted samples for partial matches to a
ground truth sample. However, computing such a
metric first requires identifying the optimal match-
ing between the predicted and ground truth sample
lists, for which we employ a maximum weight
bipartite matching algorithm. This approach ac-
knowledges the accuracy of a prediction even if not
all attributes are perfectly matched.

Additionally, we also apply a strict metric, simi-
lar to the approach of Cheung et al. (2023), where a
prediction is considered correct only if it perfectly
matches with the ground truth across all attributes
of a PNC sample.

Standardization of Prediction To accurately cal-
culate the partial and strict metrics, standardizing
predictions is essential. The variability in polymer
name expressions in scientific literature makes uni-
form evaluation challenging. For example, “silica”
and “silicon dioxide” are different terms for the
same filler. Our dataset from NanoMine uses a
standardized format for chemical names. To align
the predicted names with this standard, we use re-
sources by Hu et al. (2021), which lists 89 matrix
names with their standard names, abbreviations,
synonyms, and trade names, as well as, 159 filler
names with their standard names. We standardize
predicted chemical names by matching them to the
closest names in these lists and converting them
to their standard forms. Furthermore, our dataset
exclusively uses numerical values to represent com-
positions (e.g., a composition of “0.5vol.%” should
be listed as “0.005”). Predictions in percentage
format (like “0.5v0l.%”) are thus converted to the
numerical format to align with the dataset’s repre-
sentation.

Attribute Aggregation We implement an at-
tribute aggregation approach in our evaluation. For
the “Matrix” category, a prediction is considered
accurate if the model correctly identifies either the
“Matrix Chemical Name” or the “Matrix Abbrevia-
tion”. Similarly, in the “Filler” category, accuracy



is determined by the correct prediction of either
the “Filler Chemical Name” or the “Filler Abbre-
viation”. Lastly, for the “Composition” category,
a correct prediction may be based on either the
“Filler Composition Mass” or the “Filler Composi-
tion Volume”. This approach allows for a broader
assessment, capturing any correct form of attribute
identification without focusing on the finer details
of each attribute.

Partial-F1 This metric employs the F; score in
its calculation, which proceeds in two steps. Ini-
tially, an accuracy score is computed for each pair
of predicted and ground truth samples where we
compute the fraction of matches in the <Matrix,
Filler, Composition> trio across the two samples.
This process results in k x k score combinations,
where k and k represent the counts of predicted
and ground truth samples. The next step involves
translating these comparisons into an assignment
problem within a bipartite graph. Here, one set of
vertices symbolizes the ground truth samples, and
the other represents the predicted samples, with
edges denoting the F; scores between pairs. The
objective is to identify a matching that optimizes
the total F; score, which can be computed using
the Kuhn-Munkres algorithm (Kuhn, 1955)). in
O(n?) time (where n = max(k,k)). Note that
if k # k, a one-to-one match for each prediction
may not be necessary. Once matching is done,
we count all the correct, false positive, and false
negative predicted attributes (the attributes of all
the unmatched predicted samples and ground-truth
samples are considered false positives and false
negatives, respectively). Subsequently, we calcu-
late the micro-average Precision, Recall, and F;.

Strict-F1 For a stricter assessment, a sample is
labeled correct only if it precisely matches one in
the ground truth. Predictions not in the ground truth
are false positives, and missing ground truth sam-
ples are false negatives. This metric emphasizes
exact match accuracy.

B Modeling Sample List Extractions from
Articles with LLMs

Our approach involves the application of LLMs to
the task defined in section A.1.3. We adopt two
prompting methods: NER+RE and an End-to-End
(E2E) approach in a zero-shot context. Figure 2
illustrates both of these.

B.1 NER+RE Prompt

Building on previous research (Peng et al., 2017;
Jia et al., 2019; Viswanathan et al., 2021), which
treated /N-ary relation extraction as a binary clas-
sification task, our NER+RE method treats Rela-
tion Extraction (RE) as a question-answering pro-
cess, following the approach in Zhang et al. (2023).
This process is executed in two stages. Initially,
the model identifies named entities within the text.
Subsequently, it classifies /V-ary relations by trans-
forming the task into a series of yes/no questions
about these entities and their relations. For evalua-
tion, we apply only the strict metric, as the partial
metric is not suitable in this binary classification
context.!

The NER+RE approach becomes computation-
ally expensive during inference, especially as the
number of entities increases. This leads to an expo-
nential growth in potential combinations, expand-
ing the candidate space for valid compositions and
consequently extending the inference time.

B.2 End-to-End Prompt

To address this challenge, we develop an End-to-
End (E2E) prompting strategy that directly extracts
JSON-formatted sample data from articles. This
E2E prompt method is designed to efficiently han-
dle the complexity and scale of extracting N-ary
relations from scientific texts, bypassing the limi-
tations of binary classification frameworks in this
context.

B.3 Self-Consistency

The self-consistency method (Wang et al., 2023),
aims to enhance the reasoning abilities of LLMs.
Originally, this method relied on taking a majority
vote from several model outputs. For our purposes,
since the output is a set of answers rather than a
single one, we apply the majority vote principle to
the elements within these sets.

To implement this, we generate ¢ predictions
from the model, each at a controlled temperature
of 0.7. Our objective is to identify which samples
appear frequently across these multiple predictions
as a sign of higher confidence from the model.

During the evaluation, each model run generates
a list of predicted samples from a specific paper.
We refer to each list as the k-th prediction, de-
noted Sy = {a¥, a5, ...,ak }. For each predicted

'While partial evaluation is theoretically possible by con-

sidering all potential samples identified in the NER step, such
an approach would yield limited insights.



element a;'-, we determine its match score matché-,
by counting how frequently it appears across all
predictions {S1, So, ..., S;}. This score can vary
from 1, meaning it appeared in only one prediction,
to ¢, indicating it was present in all predictions.
We then apply a threshold « to filter the samples.
Those with a matché at or above « are retained,
as they were consistently predicted by the model.
Samples falling below this threshold suggest less
confidence in the prediction and are removed.

C Experiments

C.1 Experimental Setup

Heuristics for Condensing Research Papers
within LLMs Token Limit LLMs come with
token limits, such as 8,192 tokens for the GPT-4
API and 4,096 for LLaMA2. These limits pose
a challenge in processing entire research papers,
which often exceed these token counts. To address
this, we employ simple heuristics to condense the
articles effectively. We first divide each paper into
distinct sections - the abstract, introduction, ex-
periments, main text, results, and the captions for
figures and tables. We keep the title, abstract, and
captions for figures and tables unchanged due to
their conciseness and rich information content. For
the introduction, experiments, main text, and re-
sults, we selectively retain only those sentences
that contain a digit, which typically indicate cru-
cial composition details. The conclusion section is
completely left out, as it often contains repetitive
information.

Setup We divide our dataset into 52 validation
articles and 141 test articles. We assess the per-
formance using micro average Precision, Recall,
and F1 scores, considering both strict and partial
metrics at the sample and property levels. We
also compare two different prompting strategies
NER+RE and E2E. Moreover, we consider the self-
consistency technique.

C.2 Analysis of Errors

Accurately extracting PNC samples is a complex
task, and even state-of-the-art LLMs fail to cap-
ture all the samples. We find that out of 1052
ground-truth samples, 773 were not identified in
the model’s predictions. Furthermore, 364 of the
664 predictions were incorrect. This section dis-
cusses three categories of challenges faced by cur-
rent models in sample extraction and proposes po-
tential directions for future improvements.

Compositions in Tables and Figures NanoMine
aggregates samples from the literature, including
those presented in tables and visual elements within
research articles. As demonstrated in the first ex-
ample of Figure 3, a sample is derived from the
inset of a graph. Our present approach relies solely
on language models. Future research could focus
on advancing models to extract information from
both textual and visual data through multimodal
methods.

Disentangling the Complex Components in PNC
Samples The composition of polymer nanocom-
posites (PNC) includes a variety of components
such as hardeners and surface treatment agents. A
common issue in our model’s predictions is incor-
rectly identifying these auxiliary components as
the main attributes. For example, the second row
in Figure 3 shows the model predicting the filler
material along with its surface treatments instead
of recognizing the filler by itself. Going forward,
enhancing the model to accurately distinguish and
classify the diverse elements in a PNC sample is a
key area for development.

Non-standard/Uncommon Chemical Name Pre-
dictions The expression of chemical names is
inherently complex, with multiple names often ex-
isting for the same material. In some cases, pre-
dicted chemical names are conceptually accurate
yet challenging to standardize. This suggests the
necessity for more sophisticated approaches that
can handle the diverse and complex representations
of chemical compounds. The third example in Fig-
ure 3 shows an example of this.



Challenging Example

Ground-truth Sample

Predicted Sample

Explanation

Compositions in Tables and Figures
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{'Matrix Chemical Name': 'Polystyrene',
'Matrix Abbreviation': 'PS',

'Filler Chemical Name': ‘Tripheny!
phosphate’,

'Filler Abbreviation': 'TPP',

'Filler Mass': '0.08",

'Filler Volume': null}

{'Matrix Chemical Name': 'Polystyrene’,
'Matrix Abbreviation': 'PS',

'Filler Chemical Name': 'Tripheny!
phosphate’,

'Filler Abbreviation': 'TPP',

'Filler Mass': ‘0.04',

'Filler Volume': null}

The ground-truth sample with a
filler mass of 0.08, sourced from a
figure inset, was not mentioned in
the text and thus not captured.

Disentangling the Complex Components in PNC Samples

Copolymer grafted SiO2 nanoparticles with a

rubbery PHMA inner layer and a matrix

compatible PGMA outer layer were prepared

{'Matrix Chemical Name': 'DGEBA Epoxy
Resin',

'Matrix Abbreviation': 'epoxy',

'Filler Chemical Name': 'Silicon dioxide',
'Filler Abbreviation': 'Si0O2',

'Filler Mass’: null,

'Filler Volume’: ‘0.006’}

{'Matrix Chemical Name': 'DGEBA
Epoxy Resin',

'Matrix Abbreviation': ‘epoxy’,

'Filler Chemical Name': 'SiO2/PHMA/
PGMA',

'Filler Abbreviation’: null,

'Filler Mass': null,

‘Filler Volume’: ‘0.006’}

PHMA and PGMA are the
chemicals used in particle
surface treatment, not the
main filler.

Non-standard/Uncommon Chemical Name Predictions

...the preparation of organophilic clay through
the cationic exchange reactions with Na+-

montmorillonite clay.
The organophilic clay was prepared by a

{'Matrix Chemical Name': 'Epoxy resin’',
'Matrix Abbreviation': 'EPR',

'Filler Chemical Name':
'Montmorillonite',

'Filler Abbreviation’: null,

{'Matrix Chemical Name': 'Epoxy resin',
'Matrix Abbreviation': 'EPR',

'Filler Chemical Name': '‘Organophilic
clay modified with dodecyltriphenyl-
phosphonium',

The predicted filler name in this
case is conceptually correct.
However, it is not a standard or
commonly used chemical name.

cationic exchange method, which is a reaction
between the sodium cations of MMT clay and

both intercalation agents of dodecyltriphenyl-

phosphonium bromide

'Filler Mass': '0.01",
'Filler Volume': null}

'Filler Abbreviation’: null,
'Filler Mass': '0.01',
'Filler Volume': null}

Figure 3: Examples of challenges for LLMs, showcasing three categories of challenges encountered in capturing
accurate PNC sample compositions. Each row demonstrates a specific challenge, the ground-truth sample, the
model’s prediction, and a brief explanation of the issue."

D Prompts | [PAPER SPLIT]

In this section, we present all the prompts used in

our experiments. D.2 NER prompt

Please

D.1 E2E Prompt

Please read the following paragraphs,
find all the nano-composite samples,
and then fill out the given JSON
template for each one of those
nanocomposite samples. If there are
multiple Filler Composition Mass/
Volume for a unique set of Matrix/
Filler Chemical Name, please give a
list for the Composition. If an
attribute is not mentioned in the
paragraphs fill that section with "

identify the matrix name(s),
filler name(s), and filler
composition fraction(s). Here is an
example of what you should return:

"Matrix Chemical Names": ["Poly(
vinyl acetate)"”, "Glycerol"],

"Matrix Chemical Abbreviation”: ["
PVAC"T,

"Filler Chemical Names": ["Silicon
dioxide"],

"Filler Chemical Abbreviation”: ["

$i02"1,

null”. Mass and Volume Composition

should be followed by a %. "Filler Composition Fraction”:

L"6%", "12%", "20%", "23%",
c "32%"]
"Matrix Chemical Name": " b
chemical_name"”,
"Matrix Chemical Abbreviation”: "
abbreviation”,
"Filler Chemical Name": "
chemical_name"”,
"Filler Chemical Abbreviation”: "
abbreviation”,
"Filler Composition Mass": "
mass_value"”,
"Filler Composition Volume": "
volume_value” Sample:
} [JSON OBJECT]

[PAPER SPLIT]

D.3 RE Prompt

Is the following sample a valid polymer
nanocomposite sample mentioned in
the article? Yes or No?




Article:
[PAPER SPLIT]
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