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Abstract
This paper investigates the use of large lan-001
guage models (LLMs) for extracting sample002
lists of polymer nanocomposites (PNCs) from003
materials science research papers. The chal-004
lenge lies in the complex nature of PNC sam-005
ples, which have numerous attributes scattered006
throughout the text. To address this, we intro-007
duce a new benchmark and a novel evaluation008
technique for this task and examine different009
LLM prompting strategies: end-to-end prompt-010
ing to directly generate entities and their rela-011
tions, as well as a Named Entity Recognition012
and Relation Extraction (NER+RE) approach,013
where entities are first identified, followed by014
relation classification. We also incorporate self-015
consistency to improve LLM performance. Our016
findings show that even advanced LLMs, such017
as GPT-4 Turbo, struggle to extract all of the018
samples from an article. However, condensing019
the articles into the relevant sections can help.020

1 Introduction021

Research publications are the main source for the022

discovery of new materials in the field of materials023

science, providing a vast array of essential data.024

The creation of structured materials databases from025

these publications is essential for enhancing the026

speed and efficiency of material discovery. This027

is evident in the achievements of AI tools such as028

GNoME (Merchant et al., 2023). Yet, the unstruc-029

tured presentation of this data in journals makes it030

challenging to extract valuable information and uti-031

lize it for future discoveries (Horawalavithana et al.,032

2022). Furthermore, manually extracting material033

details from articles is inefficient and error-prone.034

Hence, there’s a growing need for an automated035

system that can transform these valuable data into036

a structured, machine-readable format for more037

efficient retrieval and analysis (Yang, 2022).038

Scientific literature on polymer nanocomposites039

(PNCs) provides key insights into their composi-040

tions and properties, essential for material science041

Section: Introduction 
The aim of this study is thus to check 
the efficiency of multi-walled carbon 
nanotubes (MWNTs)…to compare it with 
that of cellulose nanofibrils…


Section: Experiments 
A surfactant-stabilized aqueous 
suspension of poly(styrene-co-butyl 
acrylate), P(S-BuA),… Sample 
reinforced with nano fillers contents of 
up to 6vol% for cellulosic nanofibrils


Section: Results 
For higher nanotube contents (0.5 and…


PNC Sample List: 
{

   “Matrix Chemical Name”: “poly[(butyl acrylate)


-co-styrene]”,

   “Matrix Abbreviation”: “P(S-BuA)”,

   “Filler Chemical Name”: “cellulose nanofibrils”,

   “Filler Abbreviation”: null,

   “Filler Composition Mass”: null,

   “Filler Composition Volume”: “0.06”

}

{

   “Matrix Chemical Name”: “poly[(butyl acrylate)


-co-styrene]”,

   “Matrix Abbreviation”: “P(S-BuA)”,

   “Filler Chemical Name”: “multi-walled carbon


nanotubes”,

   “Filler Abbreviation”: null,

   “Filler Composition Mass”: null,

   “Filler Composition Volume”: “0.005”

}


Figure 1: A snippet from a PNC research article (Dal-
mas et al., 2007) and the extracted PNC sample list from
the NanoMine database. Note how information for a
single sample is extracted from multiple parts of the
article text.

innovation. PNCs, made by combining polymer 042

matrices with nanoscale fillers, offer customizable 043

mechanical, thermal, and electrical characteristics. 044

The variety in PNCs comes from different matrix- 045

filler combinations, each impacting the composite’s 046

properties. However, extracting this information is 047

challenging due to its dispersion across texts, fig- 048

ures, tables, and the complexity of defining each 049

sample by multiple attributes. An example in Fig- 050

ure 1 illustrates how sample details can be spread 051

over various paper sections. 052

In this paper, we use the NanoMine (Zhao et al., 053

2018) data repository to construct PNCExtract, a 054

benchmark designed for extracting PNC sample 055

lists from scientific texts using large language mod- 056

els (LLMs). PNCExtract focuses on the systematic 057

extraction of N -ary relations across different parts 058

of full-length peer-reviewed PNC articles, captur- 059

ing the unique combination of matrix, filler, and 060

composition in each sample (see Appendix A.1 061

for details). Prior research on information extrac- 062

tion from materials science literature, such as the 063

works of Dunn et al. (2022), Song et al. (2023), 064

and Xie et al. (2023), primarily focused on informa- 065

1



Model Strict Partial
Prec. Rec. F1 Prec. Rec. F1

Condensed Papers

GPT-4 Turbo (E2E) 43.3 29.4 35.0 66.9 44.0 53.1
GPT-4 Turbo (NER+RE) 27.0 35.2 30.5 - - -
GPT-4 Turbo + SC (E2E) 45.0 31.8 37.3 69.7 47.4 56.4

Full Papers

GPT-4 Turbo (E2E) 37.8 22.9 28.5 66.4 39.1 49.2
GPT-4 Turbo (NER+RE) 31.9 34.3 33.0 - - -
GPT-4 Turbo + SC (E2E) 42.5 28.3 33.9 65.7 43.4 52.3

Table 1: Precision, Recall, and F1 of GPT-4 Turbo on condensed and full papers using strict and partial metrics.
The table includes GPT-4 Turbo with NER+RE and E2E prompting, as well as an enhancement on E2E using
self-consistency (SC).

tion extraction from specific sentences or passages.066

PNCExtract, on the other hand, requires models to067

analyze entire papers to aggregate information dis-068

persed across the various sections of a paper, a key069

challenge highlighted by Hira et al. (2023). Conse-070

quently, we leverage the advanced token limits of071

GPT-4 Turbo (OpenAI, 2023) in our study.072

We also introduce a dual-metric evaluation sys-073

tem, featuring a partial metric for attribute-level074

analysis within an N -ary extraction and a strict met-075

ric for overall accuracy, addressing the limitations076

of prior works that either focused on binary rela-077

tions (Dunn et al., 2022; Xie et al., 2023; Song et al.,078

2023; Wadhwa et al., 2023) or applied strict criteria079

without acknowledging partial matches (Cheung080

et al., 2023). This system provides a comprehen-081

sive assessment by recognizing the complexity of082

PNC samples. Evaluating model performance in-083

volves checking for exact and partial matches be-084

tween predicted and ground-truth samples. The par-085

tial metric rewards predictions for partial accuracy,086

employing a maximum weight bipartite matching087

algorithm to optimally align predicted and ground-088

truth samples. This approach ensures a balanced089

evaluation that appreciates the detailed, attribute-090

rich nature of PNC samples (see Appendix A.2 for091

details).092

We explore two prompting strategies for LLMs093

in a zero-shot context. The first approach aligns094

with the principles of Named Entity Recognition095

(NER) and Relation Extraction (RE), which we096

refer to as NER+RE which involves a two-stage097

pipeline: initially, entities within the text are iden-098

tified, and subsequently, valid relations between099

these entities are extracted, a technique also ex-100

plored by Zhou et al. (2022) and Tang et al. (2023).101

However, this approach can become expensive due102

to the complexity of PNC samples, which feature 103

multiple attributes, leading to an exponential in- 104

crease in the number of candidate relations. Our 105

second prompting strategy adopts an end-to-end 106

(E2E) method by directly generating the N -ary ob- 107

jects (see Appendix B for details). We find that the 108

E2E approach works better in terms of both accu- 109

racy and efficiency. Moreover, we present a simple 110

extension to the self-consistency technique (Wang 111

et al., 2023) for list-based predictions by sampling 112

multiple times from the LLM and aggregating the 113

lists through majority voting. 114

In Table 1, we report that models significantly 115

improve when analyzing condensed versions of 116

papers (see Appendix C.1 for details). The E2E 117

prompting method exceeds the NER+RE technique 118

in terms of accuracy. Additionally, applying self- 119

consistency leads to performance improvements in 120

both condensed and full paper settings. 121

2 Conclusion and Future Works 122

We introduced PNCExtract, a benchmark for ex- 123

tracting PNC samples from scientific articles, ex- 124

ploring NER+RE and E2E prompting strategies, 125

alongside adapting self-consistency for list-based 126

predictions. We also developed a novel partial eval- 127

uation method. Our results indicate that future re- 128

search should explore more sophisticated retrieval 129

methods. Additionally, there could be significant 130

benefits from adopting multimodal strategies that 131

combine text and visual data, as well as experi- 132

menting with few-shot learning or fine-tuning tech- 133

niques to enhance the precision of chemical name 134

identification. 135
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A PNCExtract Benchmark252

A.1 Dataset253

A.1.1 NanoMine Data Repository254

NanoMine (Zhao et al., 2018) is a PNC data repos-255

itory structured around an XML-based schema de-256

signed for the representation and distribution of257

nanocomposite materials data. The NanoMine258

database, manually curated using Excel templates259

provided to materials researchers, consists of a260

broad array of potential schema entries. These261

entries are categorized into several major sections,262

such as Materials Composition, Processing, and263

Properties. The Materials Composition section cov-264

ers characteristics of the constituent materials, in-265

cluding the polymer matrix and the filler particle.266

Processing details the description of chemical syn-267

thesis. The Properties section provides measured268

data on materials performance and response, with269

each section containing numerous entries.270

A typical sample in NanoMine uses only a frac-271

tion of the possible 350 terms that keep evolving.272

NanoMine database currently contains a list of 240273

full-length scholarly articles and their correspond-274

ing PNC sample lists. While NanoMine includes275

various subfields, our study focuses on the “Mate-276

rials Composition” section. This section compre-277

hensively details the characteristics of constituent278

materials in nanocomposites, including aspects like279

the polymer matrix, filler particles, and their com-280

positions (expressed in volume or weight fractions).281

The reason for this focus is that determining which282

samples’s composition were studied in a given pa-283

per is the essential first step towards identifying and284

understanding more complex properties of PNCs.285

Out of the 240 articles, we focus on 193 and dis-286

regard the rest due to having inconsistent format.287

These 193 articles contain a total of 1052 samples.288

A.1.2 Dataset Curation and Cleaning289

During our curation process, we selectively disre-290

gard certain attributes from NanoMine based on291

three criteria:292

• Complexity in Extraction and Evaluation: At-293

tributes that cannot be directly extracted with294

a language model or evaluated are disregarded. 295

For example, intricate descriptions (such as 296

“an average particle diameter of 10 um”) are 297

excluded due to their complexity in evalua- 298

tion. 299

• Rarity in the Dataset: We also disregard at- 300

tributes infrequently occurring in NanoMine. 301

For instance, “Tacticity” is noted in only 302

0.05% of samples. This rarity might stem 303

from either its infrequent mention in research 304

papers or oversights by annotators. 305

• Relative Importance: Attributes that are less 306

important for our analysis, such as “Manu- 307

facturer Or Source Name”, are also excluded. 308

Our focus is on extracting attributes that are 309

most relevant for identifying a nanocomposite 310

sample. 311

This filtering process retains 6 out of the 43 to- 312

tal attributes in the Materials Composition of 313

NanoMine. 314

A.1.3 Problem Definition 315

We define our dataset as D = {D1, D2, . . . , D193}, 316

where each Di is a peer-reviewed paper included 317

in our study. Corresponding to each paper Di, 318

there is an associated list of samples Si, compris- 319

ing various PNC samples. Formally, Si is defined 320

as Si = {si1, si2, . . . , sini}, where sij represents 321

the j-th PNC sample in the sample list of the i- 322

th paper, and ni denotes the total number of PNC 323

samples in Si. Each paper has 5.72 samples on 324

average. Each sample sij is a JSON object with six 325

entries: Matrix Chemical Name, Matrix Chemical 326

Abbreviation, Filler Chemical Name, Filler Chem- 327

ical Abbreviation, Filler Composition Mass, and 328

Filler Composition Volume. Table 2 presents the 329

count of samples with each attribute marked as non- 330

null. The primary task involves extracting a set of 331

samples Ŝi from a given paper Di.

Attribute Number of Samples

Matrix Chemical Name 1052
Matrix Chemical Abbreviation 864
Filler Chemical Name 1052
Filler Chemical Abbreviation 819
Filler Mass 624
Filler Volume 407

Table 2: Number of total samples for which each of the
attributes is non-null.

332
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Instruction: Please read the paragraphs and find all PNC 
samples…

JSON Template: 
{


“Matrix Chemical Name”: “chemical_name”,

. . . 

}

Article: {“article text”:…} 

LLM

Response:  
PNC Sample #1:

{


“Matrix Chemical Name”: “Poly(vinylidene fluoride)”,

. . . 

“Filler Composition”: “1.01 vol.%”,

}


. . . 

PNC Sample #n: 

{


“Matrix Chemical Name”: “Poly(vinylidene fluoride)”,

. . . 

“Matrix Chemical Name”: “1.2 vol.%”,

}

Instruction: Please identify the matrix, filler, and 
composition…

Article: {“article text”:…} 

Response:  
“Matrix Chemical Names”: [“Epoxy resin, “Poly(vinylidene 
fluoride)”, “Bisphenol-A epoxy resin” ],


. . . 
“Filler Compositions”: [“1.01 vol.%”, “1.2 vol.%”, “30 vol.%”, 
“60 vol.%”]

Instruction: Is the following PNC sample 
valid…Yes or No?

Candid Sample #1: 

{


“Matrix Chemical Name”: “Epoxy resin”,

. . . 

“Filler Composition”: “1.01 vol.%”,

}

Article: {“article text”:…} 

LLM Response: No.

Instruction: Is the following PNC sample 
valid…Yes or No?

Candid Sample #m: 

{


“Matrix Chemical Name”: “Poly(vinylidene

 fluoride)”,


. . . 
“Filler Composition”: “1.01 vol.%”,


}

Article: {“article text”:…} 

LLM Response: Yes.

. 

. 

.

NER Step:

RE Step:

End-to-End Prompt:

LLM

Figure 2: Two prompting strategies for PNC sample extraction with LLM are presented. On the left, the end-to-end
(E2E) approach uses a single prompt to directly extract PNC samples. On the right, the NER+RE approach first
identifies relevant entities and then classifies their relations through yes/no prompts to validate PNC samples.

A.2 Evaluation Metrics333

Our task involves evaluating the performance of our334

model in predicting PNC sample lists. One natural335

approach, also utilized by Cheung et al. (2023), is336

to verify if there is an exact match between the pre-337

dicted and the ground-truth samples. This method,338

however, has a notable limitation, particularly due339

to the numerous attributes that define a PNC sam-340

ple. Under such strict evaluation criteria, a pre-341

dicted sample is considered entirely incorrect if342

even one attribute is predicted inaccurately, which343

can be too strict considering the complexity and344

attribute-rich nature of PNC samples.345

Hence, we also propose a partial metric which346

rewards predicted samples for partial matches to a347

ground truth sample. However, computing such a348

metric first requires identifying the optimal match-349

ing between the predicted and ground truth sample350

lists, for which we employ a maximum weight351

bipartite matching algorithm. This approach ac-352

knowledges the accuracy of a prediction even if not353

all attributes are perfectly matched.354

Additionally, we also apply a strict metric, simi-355

lar to the approach of Cheung et al. (2023), where a356

prediction is considered correct only if it perfectly357

matches with the ground truth across all attributes358

of a PNC sample.359

Standardization of Prediction To accurately cal- 360

culate the partial and strict metrics, standardizing 361

predictions is essential. The variability in polymer 362

name expressions in scientific literature makes uni- 363

form evaluation challenging. For example, “silica” 364

and “silicon dioxide” are different terms for the 365

same filler. Our dataset from NanoMine uses a 366

standardized format for chemical names. To align 367

the predicted names with this standard, we use re- 368

sources by Hu et al. (2021), which lists 89 matrix 369

names with their standard names, abbreviations, 370

synonyms, and trade names, as well as, 159 filler 371

names with their standard names. We standardize 372

predicted chemical names by matching them to the 373

closest names in these lists and converting them 374

to their standard forms. Furthermore, our dataset 375

exclusively uses numerical values to represent com- 376

positions (e.g., a composition of “0.5vol.%” should 377

be listed as “0.005”). Predictions in percentage 378

format (like “0.5vol.%”) are thus converted to the 379

numerical format to align with the dataset’s repre- 380

sentation. 381

Attribute Aggregation We implement an at- 382

tribute aggregation approach in our evaluation. For 383

the “Matrix” category, a prediction is considered 384

accurate if the model correctly identifies either the 385

“Matrix Chemical Name” or the “Matrix Abbrevia- 386

tion”. Similarly, in the “Filler” category, accuracy 387
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is determined by the correct prediction of either388

the “Filler Chemical Name” or the “Filler Abbre-389

viation”. Lastly, for the “Composition” category,390

a correct prediction may be based on either the391

“Filler Composition Mass” or the “Filler Composi-392

tion Volume”. This approach allows for a broader393

assessment, capturing any correct form of attribute394

identification without focusing on the finer details395

of each attribute.396

Partial-F1 This metric employs the F1 score in397

its calculation, which proceeds in two steps. Ini-398

tially, an accuracy score is computed for each pair399

of predicted and ground truth samples where we400

compute the fraction of matches in the <Matrix,401

Filler, Composition> trio across the two samples.402

This process results in k̂ × k score combinations,403

where k̂ and k represent the counts of predicted404

and ground truth samples. The next step involves405

translating these comparisons into an assignment406

problem within a bipartite graph. Here, one set of407

vertices symbolizes the ground truth samples, and408

the other represents the predicted samples, with409

edges denoting the F1 scores between pairs. The410

objective is to identify a matching that optimizes411

the total F1 score, which can be computed using412

the Kuhn-Munkres algorithm (Kuhn, 1955)). in413

O(n3) time (where n = max(k̂, k)). Note that414

if k̂ ̸= k , a one-to-one match for each prediction415

may not be necessary. Once matching is done,416

we count all the correct, false positive, and false417

negative predicted attributes (the attributes of all418

the unmatched predicted samples and ground-truth419

samples are considered false positives and false420

negatives, respectively). Subsequently, we calcu-421

late the micro-average Precision, Recall, and F1.422

Strict-F1 For a stricter assessment, a sample is423

labeled correct only if it precisely matches one in424

the ground truth. Predictions not in the ground truth425

are false positives, and missing ground truth sam-426

ples are false negatives. This metric emphasizes427

exact match accuracy.428

B Modeling Sample List Extractions from429

Articles with LLMs430

Our approach involves the application of LLMs to431

the task defined in section A.1.3. We adopt two432

prompting methods: NER+RE and an End-to-End433

(E2E) approach in a zero-shot context. Figure 2434

illustrates both of these.435

B.1 NER+RE Prompt 436

Building on previous research (Peng et al., 2017; 437

Jia et al., 2019; Viswanathan et al., 2021), which 438

treated N -ary relation extraction as a binary clas- 439

sification task, our NER+RE method treats Rela- 440

tion Extraction (RE) as a question-answering pro- 441

cess, following the approach in Zhang et al. (2023). 442

This process is executed in two stages. Initially, 443

the model identifies named entities within the text. 444

Subsequently, it classifies N -ary relations by trans- 445

forming the task into a series of yes/no questions 446

about these entities and their relations. For evalua- 447

tion, we apply only the strict metric, as the partial 448

metric is not suitable in this binary classification 449

context.1 450

The NER+RE approach becomes computation- 451

ally expensive during inference, especially as the 452

number of entities increases. This leads to an expo- 453

nential growth in potential combinations, expand- 454

ing the candidate space for valid compositions and 455

consequently extending the inference time. 456

B.2 End-to-End Prompt 457

To address this challenge, we develop an End-to- 458

End (E2E) prompting strategy that directly extracts 459

JSON-formatted sample data from articles. This 460

E2E prompt method is designed to efficiently han- 461

dle the complexity and scale of extracting N -ary 462

relations from scientific texts, bypassing the limi- 463

tations of binary classification frameworks in this 464

context. 465

B.3 Self-Consistency 466

The self-consistency method (Wang et al., 2023), 467

aims to enhance the reasoning abilities of LLMs. 468

Originally, this method relied on taking a majority 469

vote from several model outputs. For our purposes, 470

since the output is a set of answers rather than a 471

single one, we apply the majority vote principle to 472

the elements within these sets. 473

To implement this, we generate t predictions 474

from the model, each at a controlled temperature 475

of 0.7. Our objective is to identify which samples 476

appear frequently across these multiple predictions 477

as a sign of higher confidence from the model. 478

During the evaluation, each model run generates 479

a list of predicted samples from a specific paper. 480

We refer to each list as the k-th prediction, de- 481

noted Sk = {ak1, ak2, ..., akm}. For each predicted 482

1While partial evaluation is theoretically possible by con-
sidering all potential samples identified in the NER step, such
an approach would yield limited insights.
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element aij , we determine its match score matchij ,483

by counting how frequently it appears across all484

predictions {S1, S2, ..., St}. This score can vary485

from 1, meaning it appeared in only one prediction,486

to t, indicating it was present in all predictions.487

We then apply a threshold α to filter the samples.488

Those with a matchij at or above α are retained,489

as they were consistently predicted by the model.490

Samples falling below this threshold suggest less491

confidence in the prediction and are removed.492

C Experiments493

C.1 Experimental Setup494

Heuristics for Condensing Research Papers495

within LLMs Token Limit LLMs come with496

token limits, such as 8,192 tokens for the GPT-4497

API and 4,096 for LLaMA2. These limits pose498

a challenge in processing entire research papers,499

which often exceed these token counts. To address500

this, we employ simple heuristics to condense the501

articles effectively. We first divide each paper into502

distinct sections - the abstract, introduction, ex-503

periments, main text, results, and the captions for504

figures and tables. We keep the title, abstract, and505

captions for figures and tables unchanged due to506

their conciseness and rich information content. For507

the introduction, experiments, main text, and re-508

sults, we selectively retain only those sentences509

that contain a digit, which typically indicate cru-510

cial composition details. The conclusion section is511

completely left out, as it often contains repetitive512

information.513

Setup We divide our dataset into 52 validation514

articles and 141 test articles. We assess the per-515

formance using micro average Precision, Recall,516

and F1 scores, considering both strict and partial517

metrics at the sample and property levels. We518

also compare two different prompting strategies519

NER+RE and E2E. Moreover, we consider the self-520

consistency technique.521

C.2 Analysis of Errors522

Accurately extracting PNC samples is a complex523

task, and even state-of-the-art LLMs fail to cap-524

ture all the samples. We find that out of 1052525

ground-truth samples, 773 were not identified in526

the model’s predictions. Furthermore, 364 of the527

664 predictions were incorrect. This section dis-528

cusses three categories of challenges faced by cur-529

rent models in sample extraction and proposes po-530

tential directions for future improvements.531

Compositions in Tables and Figures NanoMine 532

aggregates samples from the literature, including 533

those presented in tables and visual elements within 534

research articles. As demonstrated in the first ex- 535

ample of Figure 3, a sample is derived from the 536

inset of a graph. Our present approach relies solely 537

on language models. Future research could focus 538

on advancing models to extract information from 539

both textual and visual data through multimodal 540

methods. 541

Disentangling the Complex Components in PNC 542

Samples The composition of polymer nanocom- 543

posites (PNC) includes a variety of components 544

such as hardeners and surface treatment agents. A 545

common issue in our model’s predictions is incor- 546

rectly identifying these auxiliary components as 547

the main attributes. For example, the second row 548

in Figure 3 shows the model predicting the filler 549

material along with its surface treatments instead 550

of recognizing the filler by itself. Going forward, 551

enhancing the model to accurately distinguish and 552

classify the diverse elements in a PNC sample is a 553

key area for development. 554

Non-standard/Uncommon Chemical Name Pre- 555

dictions The expression of chemical names is 556

inherently complex, with multiple names often ex- 557

isting for the same material. In some cases, pre- 558

dicted chemical names are conceptually accurate 559

yet challenging to standardize. This suggests the 560

necessity for more sophisticated approaches that 561

can handle the diverse and complex representations 562

of chemical compounds. The third example in Fig- 563

ure 3 shows an example of this. 564
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Challenging Example Ground-truth Sample Predicted Sample Explanation

{'Matrix Chemical Name': 'Polystyrene', 

'Matrix Abbreviation': 'PS', 

'Filler Chemical Name': 'Triphenyl 
phosphate', 

'Filler Abbreviation': 'TPP', 

'Filler Mass': '0.08', 

'Filler Volume': null}

The ground-truth sample with a 
filler mass of 0.08, sourced from a 
figure inset, was not mentioned in 
the text and thus not captured.

…the preparation of organophilic clay through 
the cationic exchange reactions with Na+-
montmorillonite clay.

{'Matrix Chemical Name': 'Epoxy resin', 

'Matrix Abbreviation': 'EPR', 

'Filler Chemical Name': 
'Montmorillonite', 

'Filler Abbreviation’: null, 

'Filler Mass': '0.01', 

'Filler Volume': null}

{'Matrix Chemical Name': 'Epoxy resin', 

'Matrix Abbreviation': 'EPR', 

'Filler Chemical Name': 'Organophilic 
clay modified with dodecyltriphenyl-
phosphonium', 

'Filler Abbreviation’: null, 

'Filler Mass': '0.01', 

'Filler Volume': null}

The predicted filler name in this 
case is conceptually correct. 
However, it is not a standard or 
commonly used chemical name.

Copolymer grafted SiO2 nanoparticles with a 
rubbery PHMA inner layer and a matrix 
compatible PGMA outer layer were prepared

{'Matrix Chemical Name': 'DGEBA Epoxy 
Resin', 

'Matrix Abbreviation': 'epoxy', 

'Filler Chemical Name': 'Silicon dioxide', 

'Filler Abbreviation': 'SiO2', 

'Filler Mass’: null,   

'Filler Volume’: ‘0.006’}

{'Matrix Chemical Name': 'DGEBA 
Epoxy Resin', 

'Matrix Abbreviation': ‘epoxy', 

'Filler Chemical Name': 'SiO2/PHMA/
PGMA', 

'Filler Abbreviation’: null, 

'Filler Mass': null,  

‘Filler Volume’: ‘0.006’}

PHMA and PGMA are the 
chemicals used in particle 
surface treatment, not the 
main filler.

{'Matrix Chemical Name': 'Polystyrene', 

'Matrix Abbreviation': 'PS', 

'Filler Chemical Name': 'Triphenyl 
phosphate', 

'Filler Abbreviation': 'TPP', 

'Filler Mass': ‘0.04', 

'Filler Volume': null}

The organophilic clay was prepared by a 
cationic exchange method, which is a reaction 
between the sodium cations of MMT clay and 
both intercalation agents of dodecyltriphenyl-
phosphonium bromide

Compositions in Tables and Figures

Non-standard/Uncommon Chemical Name Predictions

Disentangling the Complex Components in PNC Samples

Figure 3: Examples of challenges for LLMs, showcasing three categories of challenges encountered in capturing
accurate PNC sample compositions. Each row demonstrates a specific challenge, the ground-truth sample, the
model’s prediction, and a brief explanation of the issue."

D Prompts565

In this section, we present all the prompts used in566

our experiments.567

D.1 E2E Prompt568

569
Please read the following paragraphs ,570

find all the nano -composite samples ,571
and then fill out the given JSON572

template for each one of those573
nanocomposite samples. If there are574
multiple Filler Composition Mass/575
Volume for a unique set of Matrix/576
Filler Chemical Name , please give a577
list for the Composition. If an578
attribute is not mentioned in the579
paragraphs fill that section with "580
null". Mass and Volume Composition581
should be followed by a %.582

583
{584

"Matrix Chemical Name": "585
chemical_name",586

"Matrix Chemical Abbreviation ": "587
abbreviation",588

"Filler Chemical Name": "589
chemical_name",590

"Filler Chemical Abbreviation ": "591
abbreviation",592

"Filler Composition Mass": "593
mass_value",594

"Filler Composition Volume ": "595
volume_value"596

}597
598

[PAPER SPLIT] 599600

D.2 NER prompt 601

602
Please identify the matrix name(s), 603

filler name(s), and filler 604
composition fraction(s). Here is an 605
example of what you should return: 606

607
{ 608

"Matrix Chemical Names": ["Poly( 609
vinyl acetate)", "Glycerol"], 610

"Matrix Chemical Abbreviation ": [" 611
PVAc"], 612

"Filler Chemical Names": [" Silicon 613
dioxide"], 614

"Filler Chemical Abbreviation ": [" 615
SiO2"], 616

"Filler Composition Fraction ": 617
["6%", "12%", "20%", "23%", 618
"32%"] 619

} 620
621

[PAPER SPLIT] 622623

D.3 RE Prompt 624

625
Is the following sample a valid polymer 626

nanocomposite sample mentioned in 627
the article? Yes or No? 628

629
Sample: 630
[JSON OBJECT] 631

632
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Article:633
[PAPER SPLIT]634635
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