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Abstract

We investigate the quality of generated sen-
tence pairs from an open-source language
model to be utilized downstream to fine-tune a
sentence transformers within the rotorcraft avi-
ation domain. The generated sentences are eval-
uated using various measurements for prompt
adherence, word usage, syntactic similarity, se-
mantic similarity, and style.

1 Introduction

Unstructured data–such as narratives or natural lan-
guage reports–can be mined and repurposed for
a broader range of contexts (Boulton and Ham-
mersley, 2006). In the domain of mining aviation
accident and incident reports, many employ topic
mining to identify key themes and patterns (Luo
and Shi, 2019; Rose et al., 2020) and classification
to categorize records based on their content (Zhang
et al., 2021; Madeira et al., 2021; Miyamoto et al.,
2022). Recent research highlights the effectiveness
of language models fine-tuned on domain-specific
data (Kierszbaum et al., 2022; Chandra et al., 2023;
Jonk et al., 2023).

Mining information deficiencies from aviation
accident and incident reports holds potential for
creating an information deficiency landscape. We
leverage a dataset comprising 8,500+ rotorcraft
specific records from the National Transportation
Safety Board (NTSB) and National Aeronautics
and Space Administration’s Aviation Safety Re-
porting System (NASA ASRS). By linking defi-
ciencies with other flight attributes (e.g., phase of
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flight, weather), we aim to build an information de-
ficiency landscape to be incorporated in a decision
support system for rotorcraft pilots.

This extended abstract explores the initial steps
of generating and validating custom sentence pairs
tailored for fine-tuning a sentence transformer
(Reimers and Gurevych, 2019). Given the potential
for “hallucinations” in generative models (Maynez
et al., 2020; Ji et al., 2023), a robust validation
strategy is crucial to ensure their effectiveness of
fine-tuning using these generated sentence pairs.

Table 1: Seven prompts utilized to generate sentences

# Prompt
1 Rewrite this sentence:
2 Rewrite this sentence to be more informal:
3 Rewrite this sentence to be more formal:
4 Reorganize this sentence:
5 Rewrite this sentence to be more concise:
6 Rewrite this in another way:
7 Rewrite this sentence using different vocabulary:

2 Methodology

We evaluated sentence pairs generated by the In-
struct variant of Mixtral (8x7B SMoE), an open-
source language model (INSTMixtral; Jiang et al.,
2024). We tested 7 “rewrite” prompts, see Table 1,
on 50 sampled sentences from our dataset.

To evaluate the quality of the 350 generated sen-
tences, we compared them to the original sentences
utilizing a variety of metrics. First, to evaluate
word usage similarity and syntactic similarity, we
utilized the stemmed form of words (NLTK) and
part of speech tags (spaCy) in the sentences in two
ways: 1) We calculated the Stem Union % and
POS Union %, which represents the percentage of
stemmed words/part of speech tags shared between
sentences divided by the number of stemmed words
in the original sentence; 2) We measured the Stem
Lev Dist % and POS Lev Dist % using a normal-
ized Levenshtein distances (LevLibrary) account-
ing for sentence length, to quantify the similarity



Table 2: Median scores calculated across prompts (excluding Flesch-Kincaid, Flesh, and Extra %). “Average” is the
mean of median scores per prompt. “OS” stands for original sentence score in readability metrics.

Metrics Average Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6 Prompt 7
Stem Union % 63.05% 71.42% 48.53% 64.17% 91.67% 71.43% 60.77% 33.33%
Stem Lev Dist % 80.67% 78.47% 81.82% 82.09% 73.03% 63.64% 89.17% 96.43%
POS Union % 99.2% 100% 100% 100% 100% 94.38% 100% 100%
POS Lev Dist % 57.02% 72.25% 50% 50% 64.06% 50% 62.83% 50%
Flesch-Kincaid OS:12.14 13.61 7.93 16.3 13.01 10.57 13.61 14.65
Flesch OS:45.2 38.08 71.4 25.34 40.87 49.75 39.37 29.14
Cosine Sim 0.836 0.869 0.782 0.823 0.907 0.833 0.859 0.777
Extra % 12% 8% 28% 18% 8% 14% 2% 6%

in stemmed word and tag order. Then, we assessed
semantic similarity by embedding the sentences us-
ing the All-MPNet-base-v2 (MPNet) and retrieving
its cosine similarity score (SK) between its original
sentence and the generated sentence. To analyze
stylistic differences between the generated and orig-
inal sentences, we calculated Flesch Reading Ease
and Flesch-Kincaid Grade Level (RD) scores for
each group of sentences (originals, prompts, etc.).
In order to do this, we aggregated each set into a
single text to better represent overall stylistic trends
within each group. Finally, we assessed prompt ad-
herence, counting the occurrences of extraneous
information introduced by the generated versions.
The code and dataset utilized in this work are avail-
able on our open science framework repository:
https://osf.io/9rtfy/.

3 Results and Discussion

To assess the quality of the generated sentences,
we calculated metrics as they relate to lexical, se-
mantic, syntactic, and stylistic similarity as well as
prompt adherence. The results of these metrics are
shown in Table 2. For each prompt, we calculated
the median value (instead of average) because we
found that there were outliers.

Utilizing the union and Levenshtein distance for
stemmed words and part of speech tags allowed
for assessing similarity in relation to lexical and
syntactic usage between the original and gener-
ated sentences. The stemmed terms metrics indi-
cates that Prompt 4 has the highest level (91.67%)
of similarity, while Prompt 7 has the least sim-
ilarity (33.33%). Interestingly, the average dif-
ference in stemmed word order across prompts
was high (80.67%), indicating frequent word re-
arrangements even with similar vocabulary. No-
tably, Prompt 5 required the least editing in word
order (63.64%), while Prompt 7’s sentences would
require the most restructuring (96.43%). Part of

speech tags, due to the limited set of tags, exhib-
ited high similarity between original and generated
sentences. However, the ordering differed with an
average of 57%; this suggests that despite similar
tags, the structures varied between the original and
the generated sentences.

To analyze stylistic differences, we calculated
Flesch-Kincaid Grade Level and Flesch Reading
Ease scores. These readability scores revealed
significant variations across generated prompts.
Prompt 2 had the lowest grade level score, but
the highest readability ease. This aligns with
the prompt’s objective of generating informal sen-
tences.

Assessing semantic similarity proved challeng-
ing with the current approach. Cosine similarity
on generated All-MPNet-base-v2 (MPNet) embed-
dings to original sentences produced low values
despite perceived semantic closeness observed in
manual evaluation. Therefore, it is necessary to
explore alternative methods to evaluate semantic
similarity in the future.

Across all the generated sentences, 12% had
extraneous results in the prompt, with Prompt 2
having the highest at 28%. These extraneous infor-
mation included conversations and extra sentences.

4 Conclusion

Our initial analysis reveals distinct differences in
vocabulary, syntax, and style between generated
and original sentences. However, assessing se-
mantic similarity necessitates further investigation.
This research lays the groundwork for validating
generated sentence similarity/dissimilarity for use
in fine-tuning a sentence transformer using previ-
ously non-paired sentences.

Limitations

This is a preliminary study with a small sample size
of 50 records. This raises concerns about the gen-

https://osf.io/9rtfy/


eralizability of findings to the entire dataset. Addi-
tionally, the model’s capability to generate novel
information not explicitly present in the original
sentence presents a potential challenge. Without a
more robust method to check for semantic similar-
ity, this could be a limitation of this methodology.

Ethics Statement

Language Models have been shown to reflect and
amplify societal biases present in training data.
This is an ongoing area of research, with efforts
focused on mitigating bias in generated content.
While we acknowledge the potential for bias in our
generated sentence pairs, the domain of our dataset
makes the occurrence of harmful bias less likely.
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