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Abstract

Language style is often used by writers to con-
vey their intentions, identities, and mastery of
languages. In this paper, we show that current
large language models struggle to capture some
of the language styles without fine-tuning. To
address this challenge, we investigate whether
LLMs can be meta-trained based on representa-
tive lexicons to recognize new language styles
that they have not been fine-tuned on. Exper-
iments on 13 established style classification
tasks, as well as 63 novel tasks generated us-
ing LLMs, demonstrate that meta-training with
style lexicons consistently improves zero-shot
transfer across styles. Code and data to repro-
duce our experiments will be released upon
publication.

1 Introduction

The style of a text refers to unique ways authors
select words and grammar to express their message
(Hovy, 1987). It can provide insights into social in-
teractions and implicit communication. A notable
example underscoring the importance of studying
linguistic style used in communication is the analy-
sis of body camera footage and transcripts (Voigt
et al., 2017), where police officers have been found
to use less respectful language towards black peo-
ple than white people. Moreover, the open-ended
and ever-evolving nature of language styles (Xu,
2017; Kang and Hovy, 2021) motivates the need for
zero-shot classification, as it is costly to annotate
data for every possible style in every language.
This leads to a natural question: can recently
developed instruction-tuned language models do
well in identifying the style of texts without labeled
data? As we show in the paper (Table 2), this re-
mains a challenge, even though these models have
demonstrated impressive zero-shot performance on
many other tasks (Chung et al., 2022; Ouyang et al.,
2022). On the other hand, before the paradigm
in NLP shifted to pre-trained language models,

lexicons of words that are stylistically expressive
were commonly used as important lexical knowl-
dge (Verma and Srinivasan, 2019) in rule-based
(Wilson et al., 2005; Taboada et al., 2011), feature-
based (Mohammad et al., 2013; Eisenstein, 2017),
and deep learning models (Teng et al., 2016; Mad-
dela and Xu, 2018) for style identification. Many
lexicons have been developed for varied styles,
such as politeness (Danescu-Niculescu-Mizil et al.,
2013), happiness (Dodds et al., 2015), emotions
(Mohammad and Turney, 2010; Tausczik and Pen-
nebaker, 2010), etc. This leads to another research
question: can we leverage lexicons during instruc-
tion fine-tuning of large language models (LLMs)
to improve their understanding of language style?

In this paper, we examine the effectiveness of
fine-tuning LLMs to interpret lexicons that are pro-
vided as inputs to elicit latent knowledge (Kang
et al., 2023) of language styles that were acquired
during pre-training. We first compile a benchmark
of 13 diverse writing styles with both annotated
test sets and style-representative lexicons. Using
this benchmark, we show that meta-tuning with
lexicons enables different pre-trained LLMs to gen-
eralize better to new styles that have no labeled data.
For example, meta-tuning LL.aMA-2-7B (Touvron
et al., 2023) on seven styles can improve the aver-
age F1 score on a separate set of six held-out styles
by 12%, and by 8% over a general instruction-tuned
model, LLaMA-2-Chat.

To further verify the capability of LLMs to gen-
eralize to novel styles using lexicons as the only
source of supervision, we created a diverse set of
63 unique writing styles with examples using self-
instruction (Wang et al., 2023). We demonstrate
that using a small lexicon of just five words can
effectively improve generalization to new styles.
We found it helpful to replace class names with ran-
dom identifiers when meta-training with lexicons,
which prevents models from ignoring lexicons and
simply memorizing source styles’ class names.
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Figure 1: Overview of using lexicon-based instructions for cross-style zero-shot classification. It consists of two
steps: (1) instruction tuning the model on training styles; (2) evaluating the learned model on unseen target styles
zero-shot. A lexicon-based instruction is composed of instruction, class names, lexicons and

Style Dataset |C| B? Domain #Tra, Val, Test Lexicon Sources

Age (Kang and Hovy, 2021) 2 X caption 14k, 2k, 2k ChatGPT, Dict

Country (Kang and Hovy, 2021) 2 X caption 33k, 4k, 4k ChatGPT, Dict

Formality (Rao and Tetreault, 2018) 2 Vv web 209k, 10k,5k NLP (Wang et al., 2010), Dict
Hate/Offense (Davidson et al., 2017) 3 X Twitter 22k,1k,1k NLP (Ahn, 2005), Dict

Humor (CrowdTruth, 2016) 2 Vv web 40k,2k,2k ChatGPT, Dict

Politeness (Danescu-Niculescu-Mizil et al., 2013) 2 v web 10k,0.5k,0.6k NLP (Danescu-Niculescu-Mizil et al., 2013), Dict
Politics (Kang and Hovy, 2021) 3 X caption 33k, 4k, 4k NLP (Sim et al., 2013), Dict
Readability (Arase et al., 2022) 2 X web, Wiki 7k,1k,1k NLP (Maddela and Xu, 2018), Dict
Romance (Kang and Hovy, 2021) 2 Vv web 2k,0.1k,0.1k  ChatGPT, Dict

Sarcasm (Khodak et al., 2018) 2 v/ Reddit 11k,3k,3k ChatGPT, Dict

Sentiment (Socher et al., 2013) 2 X web 236k, 1k,2k NLP (Mohammad, 2021), Dict
Shakespeare (Xu et al., 2012) 2 Vv web 32k,2k,2k NLP (Xu et al., 2012), Dict
Subjectivity (Pang and Lee, 2004) 2 Vv web 6k, 1k,2k NLP (Wilson et al., 2005), Dict

Table 1: Statistics of datasets. “|C|" denotes the number of classes in each style dataset. “B?" indicates whether or
not the class distribution is balanced. “#Tra, Val, Test" lists the number of examples in train, validation and test sets.

Model Meta-Tuned? Instruction Shakespeare Romance Humor Country Sarcasm  Age  Avg.
Flan-T5 X Standard 33.36 33.33 33.33 43.15 3333 3392 3507
base X + Lex 49.95 51.30 48.66 35.34 4940  49.02 47.28
Stvle-TS v Standard 3331 43.57 36.43 19.86 3337 3575 3372
Y base v + Lex 55.10 78.98 60.56 49.09 49.25  50.80 57.30
Stvle-GPT.J v Standard 58.16 87.82 33.33 53.11 44.10 3525 51.96
yiermrr v +Lex 56.76 83.99 5586 4497 4884 4747 5632
LLaMA-2-Chat X Standard 60.20 85.72 43.84 49.19 36.02 3891 5231
(7B) X + Lex 62.59 88.95 51.01 50.88 42.88  36.54 5547
LLaMA-2-Chat X Standard 61.99 97.00 47.42 17.96 4326  48.16 52.63
(13B) X + Lex 63.49 95.00 55.15 24.41 4466  53.88 56.10
LLaMA-2 X Standard 42.13 64.41 37.38 48.27 48.84  37.13 46.36
(7B) X + Lex 50.21 77.36 45.44 49.86 47.72 47.63 53.12
Style-LLaMA v Standard 4091 41.65 48.88 48.92 49.02  49.80 46.53
(7B) v + Lex 59.03 88.97 57.64 51.52 50.83  50.53 59.75

Table 2: Macro-average F1 scores for zero-shot performance on unseen evaluation styles. We compare the models
fine-tuned on general instruction tuning data (i.e., not meta-tuned) and the “Style-*” models that are instruction-
tuned on our training styles (i.e., meta-tuned). For each model, we evaluate its zero-shot learning capabilities when
the standard and lexicon-based instructions are used, respectively.



Ethics Statement

Style classification is widely studied in the NLP
research community. We strictly limit to using only
the existing and commonly used datasets that are
related to demographic information in our experi-
ments. As a proof of concept, this research study
was only conducted on English data, where human
annotations for multiple styles are available for use
in the evaluation. We also acknowledge that lin-
guistic styles are not limited to what are included in
this paper, and can be much more diverse. Future
efforts in the NLP community could further extend
research on stylistics to more languages and styles.
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