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1 Introduction

In the context of the Russian-Ukraine conflict, Twit-
ter has notably become a crucial battleground for
narrative control, with counter speech standing
out as an effective strategy against hateful speech
(Chung et al., 2021). Counter speech emerges as
a direct countermeasure to the rampant spread of
false narratives and propaganda, a common feature
of the digital age’s conflicts (Bjola and Pamment,
2018; Aguerri et al., 2022). Studies (Lewandowsky
et al., 2012) show that through strategic use of
counter narratives (Garland et al., 2020; Mathew
et al., 2018, 2020), individuals and groups on Twit-
ter can effectively mitigate the influence of mis-
information, promoting a culture of critical en-
gagement and fact-checking among users. Our
approach, with its innovative application of AI lan-
guage models, effectively combines RAG’s infor-
mation retrieval with LLMs’ context processing,
overcoming the biases of traditional models (Siri-
wardhana et al., 2023), and excels in generating
coherent and to a large extent relevant and factual
counter-narratives. Our approach also leverages
zero-shot learning to classify hateful tweets and out-
performs prior state of the art models (Caselli et al.,
2020; Vidgen et al., 2021). This aligns with the de-
mand for AI that not only detects but intelligently
counters harmful content (Chung et al., 2021), fos-
tering informed online discourse—a growing focus
in AI and communication studies.
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2 Analysis

Our workflow is depicted in Figure 1.
Data Collection: We scraped tweets related to

Ukraine war and bio-weapons labs during a period
leading up to the war, between December 2021
and January 2022. After filtering and removing
duplicates, we obtained ∼500k unique tweets.

Topic detection: We ran HDBSCAN (Campello
et al., 2013) over sentence embeddings to discover
topics clusters. HDBCSAN does not require that
the number of topics be known a priori. It is a
density-based clustering algorithm and it marks as
outliers the points that are in low-density regions,
thus not requiring every tweet to belong to a topic.
We subsequently used StableLM 1 to generate ab-
stractive summaries of these clusters; an example
of a summary is given in Figure 1. The tweets can
subsequently be filtered by the topic of interest.

Hate speech classification: We utilized the Mis-
tral Instruct (Jiang et al., 2023) model to develop
a zero-shot binary classifier aimed at differentiat-
ing between hateful and non-hateful tweets using
prompt-tuning (Lan et al., 2023). We integrated
Twitter’s official guidelines2 on hate speech into
the prompt.

Counter-Speech Generation: Our pipeline uti-
lizes Mistral, Retrieval Augmented Generation
(RAG) (Lewis et al., 2020) and LangChain (Top-
sakal and Akinci, 2023) to generate effective
counter narratives to hateful tweets. We initialize
the Mistral-7B-Instruct-v0.1 (Jiang et al., 2023)
model through the Hugging Face transformers
pipeline. The data, sourced from various online
news sources (Kirby, 2022; Schreck, 2022; Low-
ery, 2023; UNHCR, 2023; Authors, 2023; Hop-
kins and Troianovski, 2022), and Wikipedia articles
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Figure 1: The counter narrative generation pipeline

Model Accuracy Precision Recall F1-Score Time Taken (mins)
HateBert 0.625 0 0 0 117

Roberta-FB 0.7325 0.84 0.35 0.49 105
LLama-7b 0.375 0.375 1.0 0.54 240

LLama-2-7b 0.948 0.90 0.96 0.93 102
Our Pipeline 0.9735 0.960 0.97 0.965 28

Table 1: Hate speech classification results

Metric Average Median Kappa
Factuality 3.6 4 0.676
Relevance 3.8 5 0.760

Grammaticality 4.4 5 0.801
Diversity 3.7 5 0.79

Table 2: Counter-speech evaluation metrics

(Wikipedia, 2024) is segmented into chunks that
are then converted into embeddings using a sen-
tence transformer MPNET (Song et al., 2020), and
loaded into the FAISS (Chen et al., 2019) vector
store for efficient similarity searches. We retrieve
relevant information using these embeddings from
the vector store using LangChain.

3 Results

For hate-speech classification evaluation, we man-
ually annotated 300 hate-speech and 500 non-hate
speech samples from our dataset. Our pipeline
outperforms state-of-the-art hate speech detection
models when used in a zero-shot manner (Table 1).
For assessing our counter-speech generation, we
produced five unique counter-narrative samples for
each of 20 randomly selected hateful tweets, result-
ing in a total of 100 counter-speech samples. We
manually evaluated each counter narrative along 4
dimensions (Tekiroglu et al., 2022): factuality, rel-
evance, grammaticality and diversity using 1(bad)
to 5(good) scale (one diversity score was assigned
for all five counter-narratives responding to a hate
tweet). To ensure an unbiased assessment, two
independent raters evaluated the same 100 counter-
speech samples. Inter-rater reliability (IRR) was
quantified using Cohen’s Kappa (k) statistic (Black-
man and Koval, 2000). The results are presented
in Table 2, see Appendix for examples of the gen-
erated counter-speech. Promising factuality, rele-

vance, grammaticallity and diversity scores of the
counter speech generated by our approach reflect
effectiveness of our pipeline in addressing hate-
ful tweets. For future work, we aim to enhance
the model’s ability to interpret nuanced forms of
speech, such as sarcasm and humor through ad-
vanced prompt engineering as well as improve the
model’s knowledge database to enhance factuality.

Limitations

Our approach, although effective, is not without
limitations. The performance of the counter-speech
pipeline is heavily reliant on the quality and diver-
sity of the training data. Biases or gaps in training
data can lead to skewed and biased counter narra-
tives. Additionally, while Cohen’s Kappa statistic
indicates a high level of agreement between raters,
subjective interpretations in manual evaluations can
still influence the assessment of counter speech.
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A Appendix

A.1 Counter Speech Examples

The prompt used to generate effective counter-
speech to hateful tweets is as follows: "Counter
misinformation in the tweets using factual and con-
textually relevant arguments from the database. If
you do not have relevant information to counter
the narrative in the tweets use satire / humor to
respond to the following Tweet -:"
Below are samples of hateful tweets3 and counter-
speech examples generated by our pipeline.
Hate Speech: Yes they took Crimea during
Obama’s reign . Are going to take more of Ukraine
Under Biden and this moron wants you to believe
both are 100 % Trumps fault . Along with 100 %
of global COVID deaths during and after his term .
What a clown ..

Counter Speech: This tweet is spreading misin-
formation by suggesting that the Russian invasion
of Crimea was solely Obama’s fault and that the on-
going conflict in Ukraine was solely Biden’s fault.
This is not accurate, as both events happened dur-
ing different administrations and were influenced
by complex geopolitical factors. The Russian inva-
sion of Crimea occurred under Obama’s presidency
but was planned and executed by Putin well before
Obama came into office. Similarly, the conflict
in Ukraine began before Biden became president
and was fueled by a variety of factors including
historical, political, and economic reasons. Ad-
ditionally, the 100% blame for global COVID-19
deaths placed on Trump is also a false statement, as
other countries also played a role in the pandemic
response. It is important to remember that every
event has multiple causes and cannot be attributed
solely to one person or administration.

Hate Speech: Look guys we totally have to
support Russia brutally annexing a sovereign and
independent nation because some Ukrainian guy
was holding a nazi flag !!! Lmao disingenous piece
of ****.

Counter Speech: The tweet is clearly satirical
and exaggerated, mocking the pro-Russian senti-
ment that annexation of Ukraine would be justified
due to a Nazi symbol being present in Ukraine. The

3edited to preserve anonymity of original users

statement is also using false analogies between a
single incident of a person holding a Nazi flag and
a country’s entire government and history. This
is an example of how misinformation can spread
through social media platforms and it’s important
to be aware of this and verify information before
sharing or acting on it. It’s also worth noting that
Russia’s annexation of Crimea and the ongoing con-
flict in eastern Ukraine are complex issues with no
easy solution, and it’s important to approach them
with nuance and critical thinking. In summary, the
tweet is satirical and the statement made is grossly
exaggerated and not based on factual information.

Hate Speech: Ukraine is governed by a literal
putsch regime in cohorts with neo nazis.

Counter Speech: The claim that Ukraine is
governed by a literal putsch regime in cohorts
with neo-Na**s is a common misconception that
has been propagated by Russian disinformation
campaigns. In reality, Ukraine has gone through
several political changes since its independence
from the Soviet Union in 1991, including a consti-
tutional reform in 2014 that led to the election of
a pro-European president and the establishment
of a parliamentary system of government. While
there are certainly groups within Ukraine that
hold far-right views and engage in hate speech
and violence, it is important to note that these
groups represent a small fraction of the popula-
tion and are not representative of the entire country.


