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Abstract
In recent years, the latest LLMs like GPT3 and
LlaMa2 have impressed in various fields. How-
ever, comparing them with classical models
like SBert and USE on the SentEval benchmark
reveals an interesting trend. Despite being big
and needing a lot of computing power, the latest
LLMs perform similarly to the classical models
which are more resource-friendly. To explore
deeper, we evaluated sentence encoders on five
proposed criteria: paraphrasing, synonyms re-
placement, antonyms replacement, paraphras-
ing without negation, and sentence jumbling.
Except for LlaMa2, all models struggled with
antonym replacement and sentence jumbling.
These findings emphasize that although LLMs
have come a long way, they still lack some ba-
sic meanings. This highlights the importance
of more rigorous benchmarks as well.

1 Introduction

Transformer-based Language Models (LLMs)
like SBERT (Reimers and Gurevych, 2019),
GPT-3 (Brown et al., 2020), and LLaMA (Touvron
et al., 2023) have profoundly reshaped the NLP
domain, consistently demonstrating enhanced
performance across standard benchmarks and key
downstream tasks, including translation, question
answering, and text classification. One prominent
application of these models is the generation
of “sentence embeddings“, which serve as proxy
representations of sentences. However, achieving
robust and stable sentence representations remains
an unresolved challenge. Additionally, the capacity
of these models to grasp fundamental linguistic
properties is yet to be clearly established (Pham
et al., 2021).
To investigate this in detail, we adopt a retro-
spective approach and compare the performance
of popular nine-sentence encoders (refer ap-
pendix A.3) over the proposed five criteria. The
criteria are 1) Paraphrasing, 2) Synonym Replace-
ment, 3) Antonym Replacement, 4) Paraphrasing

without Negation, and 5) Sentence Jumbling. We
use these criteria to quantify how well a sentence
encoder can capture the semantic similarity
between two sentences. Note that these criteria
only constitute a subset of linguistic properties that
we argue a good sentence encoder should hold, but
it is far from an exhaustive list, which is beyond the
scope of this paper. Furthermore, these criteria can
be experimentally evaluated in an unsupervised
fashion without requiring a specific downstream
task.

2 Semantic Evaluation Criteria

To study the basic linguistic understanding of sen-
tence encoders/language models, we devise the fol-
lowing evaluation criteria.

Criterion-1 (Paraphrasing): We argue that “A
good sentence encoder should create similar em-
beddings for paraphrased sentences and signifi-
cantly different ones for unrelated sentences“.We
measure this by computing the difference between
average similarity scores for paraphrases and non-
paraphrases. A good encoder is expected to show a
larger difference.

Criterion-2 (Synonym Replacement): We ar-
gue that “If we replace n words (where n is small)
from sentence S with their synonyms, a good sen-
tence encoder will produce similar embeddings for
the original and perturbed sentences S′

P .” This is
because synonym replacement doesn’t change the
meaning much. We measure this by computing
the difference in average similarity scores. A good
encoder is expected to show a larger difference.

Criterion-3 (Paraphrase Vs. Antonym Re-
placement) : We argue that when given a sentence
S, its paraphrase S′

P , and an antonym-replaced sen-
tence S′

A, the paraphrase should be more similar to
S than the antonym-replaced one by a clear margin
(Sim(S, S′

P ) − Sim(S, S′
A) > ϵ1). This ensures

a good sentence encoder can distinguish between



paraphrases and antonym-replaced sentences in the
semantic space.

Criterion-4 (Paraphrasing without Negation)
: In this criterion, we evaluate encoders understand-
ing of negation. We took a sentence with negation
S and a paraphrase of sentence S without negation,
S′. Hence, making S′ a affirmative representation
of the sentence S (Hossain and Blanco, 2022).
Next, we quantified the difference between the av-
erage cosine similarity scores of the pair of sen-
tences. The intuition here is that a "good" sentence
encoder will recognize the semantic equivalence
despite negation being present in S but not in S′,
and thus produce high similarity scores.

Criterion-5 (Paraphrase Vs. Sentence Jum-
bling) : Instead of replacing words, we focus on
jumbling the sentence. For a sentence S and its
paraphrase S′

P , compared to a jumbled sentence
S′
J , S′

P should be more similar to S by a clear
margin (Sim(S, S′

P ) − Sim(S, S′
J) > ϵ2). This

ensures a good sentence encoder creates embed-
dings where any paraphrase is closer to the original
sentence than a jumbled one in the semantic space.
3 Results and Conclusion

To measure similarity, we calculated the average
cosine similarity for each criterion. For criteria 1,
2, and 4, we adjusted scores to remove biases by
normalizing with random pairs.

When comparing all models on the SentEval
benchmark (refer appendix 1), we found both clas-
sical and emergent models performed competi-
tively. GPT3-ada had the highest average accu-
racy at 90.23%, followed by SBert (86.90%) and
LlaMa2 (86.48%). Moving on to criteria compar-
isons. In criterion 1, SBert stood out by outperform-
ing the latest models like GPT3-ADA and LlaMA.
The same trend was observed in criterion 4, which
is similar to criterion 1, except one sentence has
negation. SBert excelled, demonstrating its good
semantic understanding. In criterion 2, where we
expect similar results to criterion 1, SBert again out-
performed all other models, followed by GPT3-ada.
A potential reason for the latest models’ underper-
formance could be their design, mainly tailored for
text generation, possibly making them better for
longer sequences than shorter ones. Notably, all
models struggled with the WIKI dataset, showing
confusion due to high lexical overlap between sen-
tence pairs. In criterion 3, models, except LlaMa-2,
couldn’t distinguish between antonym sentences
(refer to figure 1). LlaMa-2 performed better, while

(a) Classical Model - Antonym Replacement on QQP

(b) Emergent Model - Antonym Replacement on QQP

Figure 1: The figure shows cosine similarity varia-
tions between Paraphrased and Antonym hypotheses,
determined by Sim(S, S′

P )− Sim(S, S′
A) > ϵ1. Bins

on the x-axis group data, each bin indicating samples
within a specific ϵ1 range. This figure pertains to the
QQP dataset, while figures for MRPC and PAWS-WIKI
datasets are in Appendix A.4.

GPT3-ada and GPTNeo were suboptimal. The lack
of exposure to enough negation or antonym sen-
tence pairs during pre-training could be a reason for
the encoders’ struggle. In criterion 5, after swap-
ping one word (i.e. n = 1), most models failed to
capture the impact of jumbled words on similarity.
As the word swapping increased, all models contin-
ued to struggle, except for LlaMa2, which showed
improvement. Among all models, Bloom, LASER,
Infersent, and D2v faced challenges in all criteria,
while SBert excelled in criteria 1, 2, and 4. LlaMa2
performed better in criteria 3 and 5. Further details
can be found in the appendix.

To conclude, a good sentence encoder should
pass all criteria, and SBert demonstrated strong
performance in various aspects of semantic under-
standing, outshining other models in certain scenar-
ios.



Limitations

Our findings are limited to the English language.
The experiments are primarily focused on unsu-
pervised semantic understanding tasks where no
training data or previous observations about the
goal task are available. Thus, evaluation of the con-
structed perturbed sentences is required. Therefore,
our findings may not hold for all possible down-
stream NLP tasks. However, in the absence of
available training data for a particular problem, our
findings can still be useful in choosing a suitable
sentence encoder and designing initial experiments.
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A Appendix

A.1 SentEval

SentEval (Conneau and Kiela, 2018) is a widely
used framework for evaluating the efficacy of sen-
tence embeddings. Here, sentence embeddings are
used to perform various classification tasks. Specif-
ically, the SentEval toolkit uses a logistic regres-
sion classifier or multi-layered perceptron (MLP),
which deploys a 10-fold cross-validation method-
ology across a range of classification tasks. The
testing fold is then utilized to compute the predic-
tion accuracy of the classifiers.

In this work, we assess the effectiveness of five
distinct sentence encoders on seven datasets from
the SentEval benchmark to identify the best one.

1. MR: Movie review dataset for binary sentiment
classification (Pang and Lee, 2005).

2. CR: Sentiment prediction on Product review
dataset with binary labels (Hu and Liu, 2004).

3. MPQA: An opinion polarity dataset with binary
labels (Wiebe et al., 2005).

4. SSTb: Stanford Sentiment Treebank dataset
with binary labels (Socher et al., 2013).

5. SUBJ: Subjective prediction from movie re-
views and plot summaries (Pang and Lee, 2004).

6. TREC: Fine-grained question-type classifica-
tion task from TREC (Li and Roth, 2002a).

7. MRPC: Mircosoft Paraphrase Corpus from par-
allel news sources (Li and Roth, 2002b).

When comparing all models on the SentE-
val (Conneau and Kiela, 2018) benchmark. It is a
widely used framework for evaluating the efficacy
of sentence embeddings. The accuracy scores of
each sentence encoder on SentEval can be found
in Table 1. Results reveal a strong performance
by large models, with GPT-3 achieving the high-
est average accuracy of 90.23% across datasets.
However, small models like SBERT remain highly
competitive (86.90%), underscoring their efficiency
despite utilizing far fewer parameters, and even
surpassing LlaMa2 and other large models. It is in-
teresting that, SBert model correctly identifies the
distinguishing paraphrase and non-paraphrase sen-
tences in the MRPC dataset. It is probably due to
its Siamese-like model architecture. Furthermore,
the close proximity of USE and Infersent highlights
the capabilities of smaller encoders. More crucially,
there is no unique top performance across datasets,
highlighting issues with generalizability - a key cri-
terion for a good sentence encoder. For instance,
GPT-3 and SBERT faltered on MRPC and TREC
respectively, despite success on other benchmarks.
These observations indicate that the models have
limited contextual understanding. To deeply probe
this phenomenon, we developed the five rigorous
semantic tests described in Section 2.

A.2 Datasets

In this work, we used three publicly available para-
phrasing datasets with human-annotated labels. All
three datasets come with binary labels assigned to
each pair of sentences. Label 1 (Pos) indicates that
the pair of sentences have a similar meaning and 0
(Neg) indicates otherwise. The datasets are 1) QQP
(Quora Questions Pair) dataset (Chen et al., 2018),
which is a collection of paraphrased and non-
paraphrased pairs of questions. 2) PAWS-WIKI
(Paraphrase Adversaries from Word Scrambling-
Wikipedia) dataset (Zhang et al., 2019), which is a
collection of pair of sentences from Wikipedia with
high lexical overlaps. And, 3) MRPC (Microsoft
Research Paraphrasing Corpus) dataset (Dolan and
Brockett, 2005), which is a collection of sentence
pairs extracted from news articles. We also exper-
imented with Afin dataset (Hossain and Blanco,
2022) which contains sentences with negations and
their paraphrases without negation, representing
challenging paraphrase examples.

https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170


Model MR CR SUBJ MPQA SSTb TREC MRPC Avg

SBERT 83.95 88.98 93.77 89.51 90.01 84.80 76.28 86.90
USE 75.58 81.83 91.87 87.17 85.68 92.20 69.62 83.42

Infersent 81.10 86.30 92.40 90.2 84.60 88.20 76.20 85.57
LASER 56.14 63.89 67.65 72.36 79.85 89.19 75.19 72.04
Doc2Vec 49.76 63.76 49.16 68.77 49.92 19.20 66.49 52.43

Bloom 71.69 80.72 92.09 84.48 84.46 88.80 66.84 81.29
GPTNeo 79.91 83.36 93.48 84.62 88.19 92.40 70.78 84.68
LlaMa-2 83.34 87.15 95.80 87.46 91.65 94.00 65.97 86.48
GPT3 88.36 93.08 95.31 91.29 93.63 96.00 73.97 90.23

Table 1: Evaluation of existing sentence encoders on SentEval Benchmark. The accuracy scores are generated using
the SentEval toolkit on different classification tasks. Here, GPT3 uses “text-embedding-ada-002“ for sentence
embeddings. The scores are generated using 10-fold cross-validation. BLUE and Pruple indicate best and second-
best performer respectively.

A.3 Models

In total we evaluate 9 LLM models. 1) Univer-
sal Sentence Encoder (USE) (Cer et al., 2018), 2)
Sentence-BERT (SBert) (Reimers and Gurevych,
2019), 3) InferSent (Conneau et al., 2017),
4) Language-Agnostic-SEntence Representation
(LASER) (Artetxe and Schwenk, 2019), and 5)
Document To Vector (Doc2Vec or D2V) (Le and
Mikolov, 2014). 6) GPT3-Ada1 (OpenAI, 2022),
7) LlaMa2 (Touvron et al., 2023), 8) Bloom (Scao
et al., 2022), and 9) GPTNeo (EleutherAI, 2023).

A.4 Results

A.4.1 Criteria 1
Table 2 displays criterion-1 results. Classical
SBERT excelled, distinguishing paraphrased and
non-paraphrased sentences across all datasets, fol-
lowed by USE. Emerging models like GPT3, GPT-
Neo, and LlaMa2 showed sub-optimal perfor-
mance, with Bloom and D2V failing to differen-
tiate. Potentially, emerging models, designed for
text generation, struggle with shorter sequences.
All models performed poorly on WIKI due to high
lexical overlap, confusing encoders. Comparing
with SentEval results (Table 1) revealed discrepan-
cies, questioning emergent models’ effectiveness
in sentence-level semantics.

A.4.2 Criteria 2
To generate synonym-perturbed sentences, we ran-
domly selected n (n = 1, 2, 3) verbs or adjectives
and replaced them with synonyms from the Word-
NET toolkit (Miller, 1995). This perturbation en-
sured high lexical overlap, distinct from Criterion-1.

1We used GPT3 with "text-embedding-Ada-002" model.

After this replacement, both original and perturbed
sentences were encoded using various sentence
encoders (refer to Section A.3), and their cosine
similarities were computed. Normalized average
similarity scores were calculated and reported in
Table 3 for all three datasets. SBERT and GPT3
consistently exhibited high similarity scores, with
USE closely following. SBERT excelled when
n = 1 in QQP and MRPC, while GPT3 outper-
formed as n increased, showcasing its ability to
handle greater sentence variation. Comparing this
criterion with the SentEval benchmark in Table ??
revealed a consistent trend: SBERT and GPT3 ex-
celled, while LlaMa2 and GPTNeo fell short. The
Bloom model struggled similarly in both scenarios,
showcasing deficits in distinguishing sentences. In
conclusion, classical models like SBERT and USE,
alongside the emerging GPT3, effectively capture
semantic nuances, while many other models strug-
gle, highlighting the competitiveness of classical
models with smaller sizes compared to emergent
counterparts.

A.4.3 Criteria 3
Figures 2 and 3 elucidate the performance of
encoder models on the PAWS-WIKI and MRPC
datasets, respectively. A discernible observation is
the classical encoders’ struggle to differentiate be-
tween opposing sentence pairs, underscoring their
limitations in handling foundational linguistic tasks.
Contrarily, while emergent encoder models also
face challenges, the LlaMa2 model evidences a
modest edge over its classical counterparts. Surpris-
ingly, the D2V—a classical encoder—manifests
good performance. This unexpected behavior war-
rants further exploration to derive a conclusive ex-



Model USE SBERT Infer-
Sent LASER D2V Bloom GPTNeo GPT3-

Ada LlaMa-2

Pos 0.7553 0.8526 0.3182 0.3652 0.2516 0.0059 0.2669 0.2609 0.4277

Neg 0.5278 0.5488 0.2849 0.3124 0.2368 0.0059 0.2512 0.2367 0.3734QQP
Diff 0.2275 0.3038 0.0333 0.0528 0.0148 0.0001 0.0157 0.0242 0.0543

Pos 0.8645 0.9506 0.3552 0.4268 0.5180 0.0059 0.2767 0.2719 0.4646

Neg 0.8554 0.9408 0.3552 0.4136 0.5402 0.0059 0.2750 0.2703 0.4568WIKI
Diff 0.0091 0.0098 0.0000 0.0132 -0.0222 0.0000 0.0016 0.0016 0.0077

Pos 0.7098 0.8134 0.3367 0.3828 0.4440 0.0059 0.2706 0.2634 0.4442

Neg 0.6097 0.5488 0.3256 0.3564 0.3700 0.0059 0.2652 0.2549 0.4243MRPC
Diff 0.1001 0.2646 0.0111 0.0264 0.0740 0.0001 0.0053 0.0085 0.0198

Table 2: Normalized Average Cosine Similarity for Criterion-1 (Paraphrasing task). Here, Positive (Pos.) and
Negative (Neg.) means paraphrase-pairs and non-paraphrase-pairs, respectively. Diff is the difference of "Pos" and
"Neg". BLUE and Pruple indicate best and second-best performer respectively.

QQP WIKI. MPRC
Models n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3

SBERT 0.898 0.831 0.775 0.945 0.909 0.874 0.929 0.879 0.829
USE 0.814 0.736 0.672 0.865 0.821 0.78 0.864 0.819 0.774
Infer-Sent 0.347 0.331 0.32 0.359 0.349 0.34 0.361 0.353 0.346
LASER 0.417 0.399 0.387 0.432 0.425 0.418 0.43 0.423 0.415
D2V 0.506 0.434 0.391 0.569 0.517 0.496 0.588 0.497 0.432

Bloom 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
GPTNeo 0.273 0.266 0.259 0.277 0.272 0.267 0.278 0.274 0.269
GPT3 Ada 0.894 0.869 0.851 0.915 0.904 0.894 0.916 0.905 0.895
LlaMa-2 0.443 0.393 0.347 0.462 0.433 0.398 0.463 0.43 0.388

Table 3: Criterion 2: Normalized Average Cosine Similarity between the Original and the Synonym Replaced
Sentence pairs. Columns are grouped by dataset and subdivided by the number of word replacements, n = {1, 2, 3}.
The blue and purple indicate the best and second-best performer.

planation. On the whole, our findings suggest that
while emergent models have achieved incremental
advancements over classical models in Criterion-3,
substantial opportunities for refinement remain.

A.4.4 Criteria 4

The Afin dataset, with its negation-affirmation sen-
tence pairs, is an interesting criterion for evaluating
encoder representations of semantic equivalence
with lexical changes. Despite one sentence hav-
ing negation, we anticipate high similarity between
the pairs as they are paraphrases. The normalized
cosine similarity scores in Table 4 show SBERT
outperforming all models, followed by USE (0.799
vs. 0.695). Classical encoders like LASER and
InferSent surpass emerging models, highlighting
challenges for large language models in encoding
sentence-level semantics.

A.4.5 Criteria 5
The results of the cosine similarity difference for
the Jumble Sentence task are shown in Figure [5
- 12]. All figures showcase the model’s ability
to capture semantic meaning when the words are
swapped by order of ’n’ i.e. n = 1, 2, 3 across all
three datasets. The difference score is calculated
as Sim(S, S′

P )− Sim(S, S′
J) > ϵ2. All sentence

encoders were evaluated on three datasets, and the
results suggest that the classic models struggle to
capture the word order of sentences whereas emer-
gent models show some progress over classic mod-
els. The figures display the number of samples with
a difference in cosine similarity score greater than
ϵ2.



(a) Classical Model - Antonym Replacement Task on MRPC dataset

(b) Emergent Model - Antonym Replacement Task on MRPC dataset

Figure 2: Histogram plots for the Antonym Replacement Criterion-3 on MRPC dataset. (a) Classical Encoders and
(b) Emergent Encoders. It highlights their ability to distinguish between a sentence and its antonym counterpart
on MRPC. The scores are computed using the formula Sim(S, S′

P ) − Sim(S, S′
A) > ϵ1, where ϵ1 denotes the

expected minimum margin of differentiation.



(a) Classical Model - Antonym Replacement Task on PAWS-WIKI dataset

(b) Emergent Model - Antonym Replacement Task on PAWS-WIKI dataset

Figure 3: Histogram plots for the Antonym Replacement Criterion-3 on PAWS-WIKI dataset. (a) Classical Encoders
and (b) Emergent Encoders. It highlights their ability to distinguish between a sentence and its antonym counterpart
on PAWS-WIKI. The scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
A) > ϵ1, where ϵ1 denotes

the expected minimum margin of differentiation.



Model USE SBERT Infer-
sent LASER D2V Bloom GPTNeo GPT3-

Ada LlaMa2

Avg. Sim. score 0.695 0.779 0.325 0.387 -0.001 0.006 0.267 0.260 0.423

Table 4: Criterion-4: Normalized Avg. similarity score of negation-affirmative sentence pair sentences from the
AFIN dataset. The blue and purple indicate the best and second-best performer.

(a) Classical Models- Sentence Jumb. on QQP for n = 1

(b) Emergent Models- Sentence Jumb. on QQP for n = 1
(c) Emergent Models- Sentence Jumb. on QQP for n = 3

Figure 4: The figures demonstrate the cosine similarity difference for Paraphrased Vs. Jumbling criterion. The score
are calculated based on Sim(S, S′

P )− Sim(S, S′
J) > ϵ2. On the x-axis, the data is grouped into bins, and each bin

represents the samples that fall within that ϵ1. Appendix ?? presents the figure for the remaining QQP, MRPC, and
PAWS-WIKI dataset



(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=1.

(b) Emergent Model - Sentence Jumbling Task on MRPC dataset with n=1.

Figure 5: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for MRPC dataset.
Figures (a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability
to distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=1 on MRPC. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=2.

(b) Emergent Model - Sentence Jumbling Task on MRPC dataset with n=2.

Figure 6: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for the MRPC dataset.
Figures (a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability
to distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=2 on MRPC. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on MRPC dataset with n=3.

(b) Emergent Model - Sentence Jumbling Task on MRPC dataset with n=3.

Figure 7: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for MRPC dataset.
Figures (a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability
to distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=3 on MRPC. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=1.

(b) Emergent Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=1.

Figure 8: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for PAW-WIKI dataset.
Figures (a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=1 on PAWS-WIKI. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=2.

(b) Emergent Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=2.

Figure 9: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for PAW-WIKI dataset.
Figures (a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=2 on PAWS-WIKI. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=3.

(b) Emergent Model - Sentence Jumbling Task on PAWS-WIKI dataset with n=3.

Figure 10: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for the PAW-WIKI dataset.
Figures (a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability to
distinguish between a sentence and its jumbled counterpart when the order of jumbling is n=3 on PAWS-WIKI. The
scores are computed using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin

of differentiation. The x-axis quantifies the range of scores, with each bin signifying the aggregate of data points
falling within that specific range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=2.

(b) Emergent Model - Sentence Jumbling Task on QQP dataset with n=2.

Figure 11: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for QQP dataset. Figures
(a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability to distinguish
between a sentence and its jumbled counterpart when the order of jumbling is n=1 on QQP. The scores are computed
using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin of differentiation. The

x-axis quantifies the range of scores, with each bin signifying the aggregate of data points falling within that specific
range. Conversely, the y-axis enumerates the number of samples populating each bin.



(a) Classical Model - Sentence Jumbling Task on QQP dataset with n=2.

(b) Classical Model - Sentence Jumbling Task on QQP dataset with n=3.

Figure 12: The presented figures illustrate the results for the Jumble Sentence Criterion-5 for QQP dataset. Figures
(a) and (b) depict histograms for classical and emergent encoders, respectively, highlighting their ability to distinguish
between a sentence and its jumbled counterpart when the order of jumbling is n=3 on QQP. The scores are computed
using the formula Sim(S, S′

P )− Sim(S, S′
J) > ϵ2 denotes the expected minimum margin of differentiation. The

x-axis quantifies the range of scores, with each bin signifying the aggregate of data points falling within that specific
range. Conversely, the y-axis enumerates the number of samples populating each bin.


