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Abstract
Memory editing (ME) has emerged as an ef-
ficient method to inject new facts into large
language models (LLMs). However, previous
studies on the evaluation and analysis of ME
have two critical limitations: (1) They only eval-
uate the model edited once while in practice, the
model usually needs to be continually edited;
(2) The evaluation only focuses on simplistic
factual triples (i.e., subject, relation, object)
without considering other capabilities of LLMs
such as logical reasoning, code generation and
so on. In this paper, we address these limitations
by extending the evaluation of edited LLMs to
six broad categories of capabilities under the
sequential editing setting. Experimental results
reveal that the majority of ME methods that
modify the parameters within LLMs systemati-
cally hurt their performance on all evaluation
tasks after being edited a few times, while the
few methods that preserve the model parameters
but integrate additional modules into LLMs to
inject new knowledge effectively maintain the
LLMs’ general capabilities. Further analysis
also indicates that several strategies, including
instruction tuning, editing deeper layers, and
increasing the model size or the batch size for
model editing, are beneficial to mitigate the
damages on LLMs when edited sequentially.

1 Introduction
Memory Editing (ME) is introduced as an effec-
tive method to inject new knowledge into large
language models (LLMs). Previous ME methods
can be roughly divided into two categories: (1)
parameter-modifying ME methods, for example,
MEND (Mitchell et al., 2022), ROME (Meng et al.,
2022a), and MEMIT (Meng et al., 2022b), which di-
rectly modify a small number of parameters within
the model. (2) Parameter-preserving ME methods,
for example, GRACE (Hartvigsen et al., 2022) and
MELO (Yu et al., 2023), which integrate additional
modules into the LLM architecture without altering
the original model parameters.

Although ME has shown much promise, previous
studies on evaluating and analyzing ME methods
have two critical limitations. First, they only eval-
uate the performance of LLMs after every single
editing. However, in practice, they usually need to
be edited sequentially, i.e., sequential memory edit-
ing (SME), which edits the same model multiple
times to continuously incorporate new knowledge.
SME is more important in real application scenarios
because new knowledge always appears over time.
Second, it is essential to assess how ME influences
the general capabilities of LLMs, including logical
analysis, multilingual proficiency, code generation
skills, and so on, which are usually overlooked in
previous studies.

To address these limitations, our study com-
prehensively evaluates the general capabilities of
memory-edited LLMs in sequential editing sce-
narios. Our findings indicate systematic damage
of parameter-modifying ME methods to LLMs
in a few sequential edits. On the contrary, the
parameter-preserving ME method, such as GRACE
successfully retains the fundamental capabilities of
the model after 100 sequential edits. Subsequent
experiments show some strategies to mitigate such
damage from parameter-modifying ME methods,
such as instruction tuning, editing deeper layers,
and increasing the model size or the batch size for
sequential model editing.

2 Experiments

The evaluation involves four distinct ME methods,
including three parameter-modifying ME meth-
ods - MEND (Mitchell et al., 2022), ROME
(Meng et al., 2022a) and MEMIT (Meng et al.,
2022b), and one parameter-preserving ME method
- GRACE (Hartvigsen et al., 2022). We lever-
age three different checkpoints of LLaMA-2 (Tou-
vron et al., 2023), consisting of LLaMA-2-7B,
LLaMA-2-7B-Chat and LLaMA-2-13B. The eval-
uation framework spans six core capabilities of



Table 1: Evaluation of four ME methods on eight tasks under the sequential editing setting for the LLaMA-2-7B
model. “ComQA” refers to the CommonsenseQA dataset. We randomly select 100 samples from ZsRE (Levy et al.,
2017) as the edition dataset. The scores for the MMLU, BBH, and TyDiQA datasets are the mean values derived
from all respective subsets.

Method Edit #. MMLU MBPP MATH BBH TyDiQA C3 ComQA AX-b Avg.
LLaMA 0 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

Modifying-parameter Methods

MEND
1 47.2 19.2 3.26 38.3 26.4 32.2 50.6 49.0 33.3
20 35.2 0.0 0.0 4.2 9.8 14.9 11.0 26.5 12.7
100 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2

ROME
1 46.9 17.6 3.3 38.4 26.8 32.0 49.6 45.5 32.5
20 34.3 18.4 2.6 33.8 24.1 28.9 20.6 51.5 26.8
100 25.5 2.8 1.0 28.8 8.0 23.2 19.0 38.4 18.3

MEMIT
1 46.7 18.4 3.4 38.3 26.8 32.0 50.6 45.9 32.8
20 25.3 16.6 1.9 32.4 19.5 15.5 19.7 31.2 20.3
100 22.9 0.0 0.0 0.0 0.0 0.0 0.49 1.8 3.1

Preserving-parameter Methods
GRACE 100 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

LLMs: Professional Knowledge, Common Sense
Knowledge, Logical Reasoning, Reading Under-
standing, Multilingual Proficiency, and Code Gen-
eration, which consists of eight benchmark test
datasets. More details of the evaluation datasets
are shown in Appendix A.1.

3 Results

The experimental results indicate different influ-
ences between parameter-modifying and parameter-
preserving ME methods on LLMs in sequential
editing scenarios. In particular, the parameter-
preserving ME method, GRACE, successfully re-
tains the fundamental capabilities of the model after
100 sequential edits, with no performance decline
observed in all downstream tasks. On the contrary,
after approximately 20 sequential edits, parameter-
modifying ME methods systematically damage all
fundamental capabilities of LLMs. Compared to
MEND and MEMIT, ROME shows less damage to
LLMs after 100 sequential edits.

Figure 1 illustrates that all model checkpoints,
regardless of their size, show performance degrada-
tion that correlates with the number of sequential ed-
its. Interestingly, the post-editing model with more
parameters suffers less damage to Code generation
and Multi-language understanding capabilities. Be-
sides, with the same number of parameters, the
dialogue-instruction-tuned model becomes more
robust on knowledge question-answering tasks such
as MMLU and CommonsenseQA. This finding sug-

gests that instruction tuning might play a positive
role in safeguarding model capabilities against the
detrimental effects of memory editing, although it
does not entirely prevent performance losses.

As shown in Figure 2, different editing datasets
influence LLMs differently in the sequential edit-
ing scenario. Besides, it also illustrates that some
data points may damage LLMs more significantly
than others, indicating the instability of parameter-
modifying ME methods. Figure 3 indicates that
editing layers closer to the output (deeper layers)
results in a marginal decrease in performance while
editing shallower layers leads to significant per-
formance degradation. Besides, as illustrated in
Figure 4, increasing the batch size of sequential
editing, meaning that reducing the number of ed-
its, can potentially mitigate some negative impacts
when the total number of edits is the same. How-
ever, these measures do not entirely negate the
observed performance decline. Our findings un-
derscore the inherent complexity and challenges of
ME approaches in meeting the demands of practical
applications in the real world.

4 Conclusion

This study comprehensively evaluated two cate-
gories of memory editing methods across eight
benchmarks for large language models in the se-
quential editing setting. We advocate the careful
use of parameter-modifying ME methods in ap-
plication scenarios due to the negative impact of



LLMs demonstrated in our study.
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A Appendix

A.1 Evaluation Datasets
As shown in Table 2, we select eight benchmarks as
evaluation datasets, including MMLU (Hendrycks
et al., 2020), BBH (Ghazal et al., 2013), MATH
(Hendrycks et al., 2021), SuperGLUE-AX-b (Wang
et al., 2019), CommonsenseQA (Talmor et al.,
2018), C3 (Sun et al., 2020), TydiQA (Clark et al.,
2020), and MBPP (Austin et al., 2021). We leverage
the opencompass codebase (Contributors, 2023), a
widely recognized open-source repository, to eval-
uate post-editing LLMs. We adopt the Perplexity
(PPL) mode for the evaluation of the MMLU dataset.
For instance, in the MMLU dataset, each item com-
prises a question and four possible answers. We
concatenate the question with each answer option to
create four distinct input sequences. Subsequently,
we compute the Perplexity for each sequence using
the edited LLM under examination. A lower Per-
plexity score indicates higher model confidence in
the corresponding sentence. We select the answer
with the lowest score as the final prediction. Con-
versely, we utilize the Generation (GEN) mode for
the evaluation of the remaining benchmarks. Specif-
ically, for MATH, BBH, and TyDiQA, we ascertain
the accuracy of the model’s predictions against the
ground truth following a post-processing procedure.

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://openreview.net/pdf?id=0DcZxeWfOPt
https://openreview.net/pdf?id=0DcZxeWfOPt


Regarding the code generation task MBPP, we em-
ploy Python’s built-in exec() function to verify the
execution of the generated code.

A.2 Evaluation Results
The appendix shows several figures about the eval-
uation results of different ME methods, model
checkpoints, and evaluation datasets.

Figure 1: Evaluation Performance across three different
checkpoints after sequential editing. ROME method
applies 100,000 wiki data as constraints during editing
models. It requires the post-editing model to remember
the wiki knowledge. Here, we denote ROME w/o C. as
the ROME method without the constraining.

Figure 2: The performance of LLaMA-2-7B on the
MMLU dataset after Editing on Different Sets. Each
edition set randomly selected 100 samples from the
ZsRE dataset without overlapping.

Figure 3: The performance of the LLaMA-2-7B model
on the CommonsenseQA dataset utilizing the ROME
and MEMIT as editing methods. LX represents editing
the X-th layer of the model, while the LX-Y represents
editing several layers between the X-th layer and the
Y-th layer.

Figure 4: The performance of LLaMA-2-7B model
on CommonsenseQA, utilizing MEMIT as the editing
method, across different editing batch sizes. BS denotes
the batch size. The x-axis represents the total number
of sequential edits. For example, for the line of a batch
size of 100, the first data point of this line lies in the
total number of edits of 100, which only edits the model
once.



Table 2: The details of downstream evaluation benchmarks.

Capability Task Datasets #. Items Metrics Language Mode #. Shots

Professional
Knowledge

High School / University
Professional Examination MMLU 15691 Acc. English PPL 5

Logical
Reasoning

Mathematical Reasoning MATH 5000 Acc. English GEN 4
Comprehensive Reasoning BBH 6511 Acc. English GEN 3

Textual Entailment AX-b 1104 Acc. English GEN 0

Common Sense
Knowledge

Knowledge
Question Answering ComQA 1221 Acc. English GEN 8

Reading
Understanding Reading Understanding C3 1825 Acc. Chinese GEN 0

Multilingual
Proficiency

Multi-Language
Question Answering TyDiQA 6322 F1 13 languages GEN 0

Code
Generation Code Generation MBPP 500 Pass. Code GEN 3


